This work illustrates a physico-chemical study of the structural, dynamic, and transport properties of electrolytes made of LiTFSI solutions in sulphoxide and sulphone solvent mixtures. Experimental measurements, by Raman and NMR spectroscopies, as well as electrochemical impedance spectroscopy, reveal the formation of a variety of ionic aggregates depending on the solvent composition that significantly affect the ion mobility and conductivity of the electrolyte. Mixtures containing tetrahydrothiophene-1-oxide exhibit a larger ion mobility due to a rapid exchange mechanism between solvent molecules, whereas the use of tetramethylene sulphone favors the formation of ionic aggregates due to the strong dipolar interactions between solvent molecules.
View Article and Find Full Text PDFThis study explores the properties of aprotic electrolytes via the application of experimental methods, including nuclear magnetic resonance spectroscopy and electrochemical techniques, along with molecular dynamic modeling. The aim is to provide a quantitative description of the physico-chemical properties of two well-established electrolytes (case studies), each exhibiting significantly distinct dielectric properties: a LiTFSI (Lithium bis(trifluoromethanesulfonyl)imide) solution in dimethyl sulfoxide (DMSO, dielectric constant =46.68) and a LiTFSI solution in tetraethylene glycol dimethyl ether (TEGDME, =7.
View Article and Find Full Text PDFAmong the materials for the negative electrodes in Li-ion batteries, oxides capable of reacting with Li via intercalation/conversion/alloying are extremely interesting due to their high specific capacities but suffer from poor mechanical stability. A new way to design nanocomposites based on the (Ti/Sn)O system is the partial oxidation of the tin-containing MAX phase of Ti Al Sn O composition. Exploiting this strategy, this work develops composite electrodes of (Ti/Sn)O and MAX phase capable of withstanding over 600 cycles in half cells with charge efficiencies higher than 99.
View Article and Find Full Text PDFThe most common MXene composition TiCT (T = F, O) shows outstanding stability as anode for sodium ion batteries (100% of capacity retention after 530 cycles with charge efficiency >99.7%). However, the reversibility of the intercalation/deintercalation process is strongly affected by the synthesis parameters determining, in turn, significant differences in the material structure.
View Article and Find Full Text PDFIn this work, we investigate the effect of the average size and density of Pt clusters on silicon on the photoelectrochemical production of hydrogen. The metallization of Si is performed via electroless deposition from aqueous HF solutions and from water-in-oil microemulsions. The first method enables control of the average diameter and density of Pt clusters by properly changing the deposition parameters like HF concentration and immersion times.
View Article and Find Full Text PDF