Publications by authors named "Stefano Marchesini"

Mesoscale imperfections, such as pores and voids, can strongly modify the properties and the mechanical response of materials under extreme conditions. Tracking the material response and microstructure evolution during void collapse is crucial for understanding its performance. In particular, imperfections in the ablator materials, such as voids, can limit the efficiency of the fusion reaction and ultimately hinder ignition.

View Article and Find Full Text PDF

X-ray micro-tomography systems often suffer from high levels of noise. In particular, severe ring artifacts are common in reconstructed images, caused by defects in the detector, calibration errors, and fluctuations producing streak noise in the raw sinogram data. Furthermore, the projections commonly contain high levels of Poissonian noise arising from the photon-counting detector.

View Article and Find Full Text PDF

Advancements in x-ray free-electron lasers on producing ultrashort, ultrabright, and coherent x-ray pulses enable single-shot imaging of fragile nanostructures, such as superfluid helium droplets. This imaging technique gives unique access to the sizes and shapes of individual droplets. In the past, such droplet characteristics have only been indirectly inferred by ensemble averaging techniques.

View Article and Find Full Text PDF

X-ray micro-tomography systems often suffer severe ring artifacts in reconstructed images. These artifacts are caused by defects in the detector, calibration errors, and fluctuations producing streak noise in the raw sinogram data. In this work, these streaks are modeled in the sinogram domain as additive stationary correlated noise upon logarithmic transformation.

View Article and Find Full Text PDF

The analysis of chemical states and morphology in nanomaterials is central to many areas of science. We address this need with an ultrahigh-resolution scanning transmission soft x-ray microscope. Our instrument provides multiple analysis tools in a compact assembly and can achieve few-nanometer spatial resolution and high chemical sensitivity via x-ray ptychography and conventional scanning microscopy.

View Article and Find Full Text PDF

Spectroscopic ptychography is a powerful technique to determine the chemical composition of a sample with high spatial resolution. In spectro-ptychography, a sample is rastered through a focused X-ray beam with varying photon energy so that a series of phaseless diffraction data are recorded. Each chemical component in the material under investigation has a characteristic absorption and phase contrast as a function of photon energy.

View Article and Find Full Text PDF

The success of ptychographic imaging experiments strongly depends on achieving high signal-to-noise ratio. This is particularly important in nanoscale imaging experiments when diffraction signals are very weak and the experiments are accompanied by significant parasitic scattering (background), outliers or correlated noise sources. It is also critical when rare events, such as cosmic rays, or bad frames caused by electronic glitches or shutter timing malfunction take place.

View Article and Find Full Text PDF

Diffractive lenses fabricated by lithographic methods are one of the most popular image forming optics in the x-ray regime. Most commonly, binary diffractive optics, such as Fresnel zone plates, are used due to their ability to focus at high resolution and to manipulate the x-ray wavefront. We report here a binary zone plate design strategy to form arbitrary illuminations for coherent multiplexing, structured illumination, and wavefront shaping experiments.

View Article and Find Full Text PDF

Phaseless diffraction measurements recorded by CCD detectors are often affected by Poisson noise. In this paper, we propose a dictionary learning model by employing patches based sparsity in order to denoise such Poisson phaseless measurements. The model consists of three terms: (i) A representation term by an orthogonal dictionary, (ii) an L pseudo norm of the coefficient matrix, and (iii) a Kullback-Leibler divergence term to fit phaseless Poisson data.

View Article and Find Full Text PDF

Xi-cam is an extensible platform for data management, analysis and visualization. Xi-cam aims to provide a flexible and extensible approach to synchrotron data treatment as a solution to rising demands for high-volume/high-throughput processing pipelines. The core of Xi-cam is an extensible plugin-based graphical user interface platform which provides users with an interactive interface to processing algorithms.

View Article and Find Full Text PDF

Coherent ptychographic imaging experiments often discard the majority of the flux from a light source to define the coherence of the illumination. Even when the coherent flux is sufficient, the stability required during an exposure is another important limiting factor. Partial coherence analysis can considerably reduce these limitations.

View Article and Find Full Text PDF

Battery function is determined by the efficiency and reversibility of the electrochemical phase transformations at solid electrodes. The microscopic tools available to study the chemical states of matter with the required spatial resolution and chemical specificity are intrinsically limited when studying complex architectures by their reliance on two-dimensional projections of thick material. Here, we report the development of soft X-ray ptychographic tomography, which resolves chemical states in three dimensions at 11 nm spatial resolution.

View Article and Find Full Text PDF

Background: The ever improving brightness of accelerator based sources is enabling novel observations and discoveries with faster frame rates, larger fields of view, higher resolution, and higher dimensionality.

Results: Here we present an integrated software/algorithmic framework designed to capitalize on high-throughput experiments through efficient kernels, load-balanced workflows, which are scalable in design. We describe the streamlined processing pipeline of ptychography data analysis.

View Article and Find Full Text PDF

Characterizing the chemistry and magnetism of magnetotactic bacteria (MTB) is an important aspect of understanding the biomineralization mechanism and function of the chains of magnetosomes (FeO nanoparticles) found in such species. Images and X-ray absorption spectra (XAS) of magnetosomes extracted from, and magnetosomes in, whole Magnetovibrio blakemorei strain MV-1 cells have been recorded using soft X-ray ptychography at the Fe 2p edge. A spatial resolution of 7 nm is demonstrated.

View Article and Find Full Text PDF

High-resolution X-ray microscopy is used to investigate the sequence of lithiation in LiFePO4 porous electrodes. For electrodes with homogeneous interparticle electronic connectivity via the carbon black network, the smaller particles lithiate first. For electrodes with heterogeneous connectivity, the better-connected particles preferentially lithiate.

View Article and Find Full Text PDF

The performance of battery electrode materials is strongly affected by inefficiencies in utilization kinetics and cycle life as well as size effects. Observations of phase transformations in these materials with high chemical and spatial resolution can elucidate the relationship between chemical processes and mechanical degradation. Soft X-ray ptychographic microscopy combined with X-ray absorption spectroscopy and electron microscopy creates a powerful suite of tools that we use to assess the chemical and morphological changes in lithium iron phosphate (LiFePO4) micro- and nanocrystals that occur upon delithiation.

View Article and Find Full Text PDF

Helium nanodroplets are considered ideal model systems to explore quantum hydrodynamics in self-contained, isolated superfluids. However, exploring the dynamic properties of individual droplets is experimentally challenging. In this work, we used single-shot femtosecond x-ray coherent diffractive imaging to investigate the rotation of single, isolated superfluid helium-4 droplets containing ~10(8) to 10(11) atoms.

View Article and Find Full Text PDF

We present a quantitative phase-contrast confocal microscope (QPCCM) by combining a line-scanning confocal system with digital holography (DH). This combination can merge the merits of these two different imaging modalities. High-contrast intensity images with low coherent noise, and the optical sectioning capability are made available due to the confocality.

View Article and Find Full Text PDF

Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein complexes, photosystem I and II (PSI and PSII), act in series to catalyse the light-driven reactions in photosynthesis. PSII catalyses the light-driven water splitting process, which maintains the Earth's oxygenic atmosphere.

View Article and Find Full Text PDF

Single shot diffraction imaging experiments via X-ray free-electron lasers can generate as many as hundreds of thousands of diffraction patterns of scattering objects. Recovering the real space contrast of a scattering object from these patterns currently requires a reconstruction process with user guidance in a number of steps, introducing severe bottlenecks in data processing. We present a series of measures that replace user guidance with algorithms that reconstruct contrasts in an unsupervised fashion.

View Article and Find Full Text PDF
Article Synopsis
  • Characterizing x-ray free electron laser (FEL) pulses is essential for improving diffractive imaging techniques.
  • The study reveals how average phase tilts and intensity distributions of hard x-ray pulses can be determined using diffraction patterns from tiny polystyrene spheres.
  • It emphasizes the need for adaptive corrections in experimental setups and underscores the importance of understanding structured pulse statistics for effective single-particle imaging.
View Article and Find Full Text PDF

A fluctuation X-ray scattering experiment has been carried out on platinum-coated gold nanoparticles randomly oriented on a substrate. A complete algorithm for determining the electron density of an individual particle from diffraction patterns of many particles randomly oriented about a single axis is demonstrated. This algorithm operates on angular correlations among the measured intensity distributions and recovers the angular correlation functions of a single particle from measured diffraction patterns.

View Article and Find Full Text PDF
Article Synopsis
  • The study presents femtosecond X-ray diffraction data of viruses and nanoparticles obtained at the Linac Coherent Light Source.
  • These data sets are the first significant benchmarks available to the public, aimed at improving algorithms for coherent diffraction methods.
  • Potential applications include creating 2D reconstructions, classifying orientations, and compiling 2D patterns into 3D diffraction images.
View Article and Find Full Text PDF

We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photoactivated states of large membrane protein complexes in the form of nanocrystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 µs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin.

View Article and Find Full Text PDF

X-ray free electron laser (X-FEL)-based serial femtosecond crystallography is an emerging method with potential to rapidly advance the challenging field of membrane protein structural biology. Here we recorded interpretable diffraction data from micrometer-sized lipidic sponge phase crystals of the Blastochloris viridis photosynthetic reaction center delivered into an X-FEL beam using a sponge phase micro-jet.

View Article and Find Full Text PDF