For use in autonomous micro air vehicles, visual sensors must not only be small, lightweight and insensitive to light variations; on-board autopilots also require fast and accurate optical flow measurements over a wide range of speeds. Using an auto-adaptive bio-inspired Michaelis-Menten Auto-adaptive Pixel (M 2 APix) analog silicon retina, in this article, we present comparative tests of two optical flow calculation algorithms operating under lighting conditions from 6 × 10 - 7 to 1 . 6 × 10 - 2 W·cm - 2 (i.
View Article and Find Full Text PDFHere we present a novel bio-inspired optic flow (OF) sensor and its application to visual guidance and odometry on a low-cost car-like robot called BioCarBot. The minimalistic OF sensor was robust to high-dynamic-range lighting conditions and to various visual patterns encountered thanks to its MAPIX auto-adaptive pixels and the new cross-correlation OF algorithm implemented. The low-cost car-like robot estimated its velocity and steering angle, and therefore its position and orientation, via an extended Kalman filter (EKF) using only two downward-facing OF sensors and the Ackerman steering model.
View Article and Find Full Text PDFIn this paper, we present: (i) a novel analog silicon retina featuring auto-adaptive pixels that obey the Michaelis-Menten law, i.e. V=V(m) I(n)/I(n)+σ(n); (ii) a method of characterizing silicon retinas, which makes it possible to accurately assess the pixels' response to transient luminous changes in a ±3-decade range, as well as changes in the initial steady-state intensity in a 7-decade range.
View Article and Find Full Text PDF