We investigate the phase diagram of a fluid of hard-core disks confined to the surface of a sphere and whose interaction potential contains a short-range attraction followed by a long-range repulsive tail (SALR). Based on previous work in the bulk we derive a stability criterion for the homogeneous phase of the fluid, and locate a region of instability linked to the presence of a negative minimum in the spherical harmonics expansion of the interaction potential. The inhomogeneous phases contained within this region are characterized using a mean-field density functional theory.
View Article and Find Full Text PDFMotivation: Hi-C matrices are cornerstones for qualitative and quantitative studies of genome folding, from its territorial organization to compartments and topological domains. The high dynamic range of genomic distances probed in Hi-C assays reflects in an inherent stochastic background of the interactions matrices, which inevitably convolve the features of interest with largely non-specific ones.
Results: Here, we introduce and discuss essHi-C, a method to isolate the specific or essential component of Hi-C matrices from the non-specific portion of the spectrum compatible with random matrices.
We investigate the formation of cluster crystals with multiply occupied lattice sites on a spherical surface in systems of ultra-soft particles interacting via repulsive, bounded pair potentials. Not all interactions of this kind lead to clustering: we generalize the criterion devised in C. N.
View Article and Find Full Text PDF