Publications by authors named "Stefano Falcinelli"

The text discusses the role of general practitioners (GPs) in the prevention and early diagnosis of melanoma, a type of skin cancer. It highlights the need for GPs to be able to recognize suspicious skin lesions and refer patients to specialist dermatology centers. However, many GPs lack comprehensive training in diagnosing melanoma.

View Article and Find Full Text PDF
Article Synopsis
  • The Italian Melanoma Intergroup has launched MelaMEd, an online training program for general practitioners focusing on the prevention and detection of cutaneous melanoma.
  • The project involves a pre-training questionnaire to assess participants’ baseline knowledge, which is compared to their post-training responses after completing the course by December 2023.
  • Preliminary analysis from January to July 2023 reveals that out of 1320 participants, many recognized key melanoma concepts, but knowledge gaps exist, particularly in specific melanoma recognition rules and management accuracy rates for various skin lesions.
View Article and Find Full Text PDF

Double ionization spectra of isothiocyanic acid (HNCS) have been measured using multi-electron and multi-ion coincidence techniques combined with high-level theoretical calculations. The adiabatic double ionization energy of HNCS is found at 27.1 ± 0.

View Article and Find Full Text PDF

This perspective review focuses on the results of an internally consistent study developed in the Perugia laboratory, centered on the fundamental interaction components that, at large intermolecular distances, determine the formation of weak intermolecular hydrogen (HB) and halogen (XB) bonds. This investigation exploits old and novel molecular beam scattering experiments involving several gaseous prototypical systems. In particular, we focus on the kinetic energy dependence of the total (elastic + inelastic) integral cross-sections.

View Article and Find Full Text PDF

The behavior of nitrosyl chloride (ClNO) exposed to ionizing radiation was studied by direct probing valence-shell electrons in temporal coincidence with ions originating from the fragmentation process of the transient ClNO. Such a molecular dication was produced by double photoionization with synchrotron radiation in the 24-70 eV photon energy range. The experiment has been conducted at the Elettra Synchrotron Facility of Basovizza (Trieste, Italy) using a light beam linearly polarized with the direction of the polarization vector parallel to the ClNO molecular beam axis.

View Article and Find Full Text PDF

The present perspective review focuses on the role of the precursor state, controlling the dynamical evolution of elementary processes, whose structure and stability are often difficult to characterize on quantitative grounds. In particular, such a state depends on the critical balance of weak intermolecular forces operative at long and intermediate separation distances. In this paper, a complementary problem has been properly addressed, concerning the suitable formulation of the intermolecular forces involved, defined in terms of a limited number of parameters and applicable in the whole space of the relative configurations of interacting partners.

View Article and Find Full Text PDF

Details on the stereo-dynamic topology of chemi-ionizations highlight the role of the centrifugal barrier of colliding reactants: it acts as a selector of the orbital quantum number effective for reaction in a state-to-state treatment. Here, an accurate internally consistent formulation of the Optical interaction potentials, obtained by the combined analysis of scattering and spectroscopic experimental findings, casts light on structure, energy and angular momentum couplings of the precursor (pre-reactive) state controlling the stereo-dynamics of prototypical chemi-ionization reactions. The closest approach (turning point) of reagents, is found to control the relative weight of two different reaction mechanisms: (i) A direct mechanism stimulated by exchange chemical forces mainly acting at short separation distances and high collision energy; (ii) An indirect mechanism, caused by the combination of weak chemical and physical forces dominant at larger distances, mainly probed at low collision energy, that can be triggered by a virtual photon exchange between reagents.

View Article and Find Full Text PDF

The potential for selective bond breaking of a small molecule was investigated with electron spectroscopy and electron-ion coincidence experiments on ClNO. The electron spectra were measured upon direct valence photoionization and resonant core excitation at the N 1s- and O 1s-edges, followed by the emission of resonant-Auger (RA) electrons. The RA spectra were analyzed with particular emphasis on the assignment of the participator and spectator states.

View Article and Find Full Text PDF

Total and partial ionization cross sections for Ne*(P)-HX (X = Cl, Br) are presented in a comparative way as a function of the collision energy between 0.02-0.5 eV.

View Article and Find Full Text PDF

The interactions of He and Ne with propylene oxide have been investigated with the molecular beam technique by measuring the total (elastic + inelastic) integral cross section as a function of collision velocity. Starting from the analysis of these experimental data, potential energy surfaces, formulated as a function of the separation distance and orientation of propylene oxide with respect to the interacting partners, have been built: The average depth of potential wells (located at intermediate separation distances) has been characterized by analyzing the observed "glory" quantum effects, and the strength of long-range attractions has been obtained from the magnitude and the velocity dependence of the smooth component of measured cross sections. The surfaces, tested and improved against new ab initio calculations of minima interaction energies at the complete basis set level of theory, are defined in the full space of relative configurations.

View Article and Find Full Text PDF

This paper reports on the collision dynamics of N with metastable Ne promoting chemiionizations, prototype of barrier-less oxidation reactions of great interest for fundamental and applied research. Extending guidelines presented in previous papers for the atom-atom case, an innovative treatment of the reaction stereodynamics involving molecules in a quantum state-to-state resolution conditions is proposed that emphasizes the role of structure and stability of the precursor that is here the reaction transition state. A critical test of such treatment, carried out exploiting a new formulation both of real and imaginary parts of the optical potential driving the reaction dynamics, is represented by the detailed-combined description of all relevant findings, provided by high resolution molecular beam scattering experiments carried out in our and other laboratories.

View Article and Find Full Text PDF

A new theoretical method, developed by our laboratory to describe the microscopic dynamics of gas-phase elementary chemi-ionization reactions, has been applied recently to study prototype atom-atom processes involving reactions between electronically excited metastable Ne*(P) and heavier noble gas atoms. Important aspects of electronic rearrangement selectivity have been emphasized that suggested the existence of two fundamental microscopic reaction mechanisms. The distinct mechanisms, which are controlled by intermolecular forces of chemical and noncovalent nature respectively, emerge under different conditions, and their balance depends on the collision energy regime investigated.

View Article and Find Full Text PDF

An innovative theoretical method to describe the microscopic dynamics of chemi-ionization reactions as prototype oxidation processes driven by selective electronic rearrangements has been recently published. It was developed and applied to reactions of Ne* atoms excited in their metastable P state, and here, its physical background is extensively described in order to provide a clear description of the microscopic phenomenon underlying the chemical reactivity of the oxidative processes under study. It overcomes theoretical models previously proposed and reproduces experimental results obtained in different laboratories.

View Article and Find Full Text PDF

Molecular dications are doubly charged cations of importance in flames, plasma chemistry and physics and in the chemistry of the upper atmosphere of Planets. Furthermore, they are exotic species able to store a considerable amount of energy at a molecular level. This high energy content of several eV can be easily released as translational energy of the two fragment monocations generated by their Coulomb explosion.

View Article and Find Full Text PDF

ConspectusMost chemical processes are triggered by electron or charge transfer phenomena (CT). An important class of processes involving CT are chemi-ionization reactions. Such processes are very common in nature, involving neutral species in ground or excited electronic states with sufficient energy (X*) to yield ionic products, and are considered as the primary initial step in flames.

View Article and Find Full Text PDF

The investigation of chemi-ionization processes provides unique information on how the reaction dynamics depend on the energy and structure of the transition state which relate to the symmetry, relative orientation of reagent/product valence electron orbitals, and selectivity of electronic rearrangements. Here we propose a theoretical approach to formulate the optical potential for Ne*(P) noble gas atom chemi-ionizations as prototype oxidation processes. We include the selective role of atomic alignment and of the electron transfer mechanism.

View Article and Find Full Text PDF

The nature, strength, range and role of the bonds in adducts of noble gas atoms with both neutral and ionic partners have been investigated by exploiting a fine-tuned integrated phenomenological-theoretical approach. The identification of the leading interaction components in the noble gases adducts and their modeling allows the encompassing of the transitions from pure noncovalent to covalent bound aggregates and to rationalize the anomalous behavior (deviations from noncovalent type interaction) pointed out in peculiar cases. Selected adducts affected by a weak chemical bond, as those promoting the formation of the intermolecular halogen bond, are also properly rationalized.

View Article and Find Full Text PDF

A photoelectron-photoion-photoion coincidence technique, using an ion imaging detector and tunable synchrotron radiation in the 18.0-37.0 eV photon energy range, inducing the ejection of molecular valence electrons, has been applied to study the double ionization of the propylene oxide, a simple prototype chiral molecule.

View Article and Find Full Text PDF

Recent developments in the experimental study of Penning ionization reactions are presented here to cast light on basic aspects of the stereo-dynamics of the microscopic mechanisms involved. They concern the dependence of the reaction probability on the relative orientation of the atomic and molecular orbitals of reagents and products. The focus is on collisions between metastable Ne(P) atoms with other noble gas atoms or molecules, for which play a crucial role both the inner open-shell structure of Ne and the HOMO orbitals of the partner.

View Article and Find Full Text PDF

This paper reports for the first time molecular beam experiments for the scattering of He, Ne, and Ar by the Br molecule, with the aim of probing in detail the intermolecular interaction. Measurements have been performed under the experimental condition to resolve the glory pattern, a quantum interference effect observable in the collision velocity dependence of the integral cross section. We analyzed the experimental data with a reliable potential model defined as a combination of an anisotropic van der Waals component with the additional contribution due to charge transfer and polar flattening effects related to the formation of an intermolecular halogen bond.

View Article and Find Full Text PDF

Bioalcohols are a promising family of biofuels. Among them, 1-butanol has a strong potential as a substitute for petrol. In this manuscript, we report on a theoretical and experimental characterization of 1-butanol thermal decomposition, a very important process in the 1-butanol combustion at high temperatures.

View Article and Find Full Text PDF

We have carried out molecular-beam scattering experiments and high-level ab initio investigations on the potential energy surfaces of a series of noble-gas-Cl2 adducts. This effort has permitted the construction of a simple, reliable and easily generalizable analytical model potential formulation, which is based on a few physically meaningful parameters of the interacting partners and transparently shows the origin, strength, and stereospecificity of the various interaction components. The results demonstrate quantitatively beyond doubt that the interaction between a noble-gas (Ng) atom - even He - and Cl2 in a collinear configuration is characterized by weak halogen bond (XB) formation, accompanied by charge transfer (CT) from the Ng to chlorine.

View Article and Find Full Text PDF

Measurements of the kinetic energy distribution of electrons, emitted in collision between Ne(P) and Kr(S) and Xe(S), have been performed in a crossed molecular beam apparatus which employs a mass spectrometer and a hemispherical electron analyzer as detectors. The analysis of the obtained experimental results provides new insights on electronic rearrangements and electronic angular momentum coupling effects that determine relevant properties of the transition state of autoionization processes, and that we have found useful to classify as adiabatic and non-adiabatic effects. In particular, while the adiabatic effects control sequence, energy, and symmetry of quantum states accessible to both reagents and products in the probed collision energy range, the non-adiabatic ones trigger the passage from entrance to exit channels.

View Article and Find Full Text PDF

Molecular-beam scattering experiments and theoretical calculations prove the nature, strength, and selectivity of the halogen bonds (XB) in the interaction of halogen molecules with the series of noble gas (Ng) atoms. The XB, accompanied by charge transfer from the Ng to the halogen, is shown to take place in, and measurably stabilize, the collinear conformation of the adducts, which thus becomes (in contrast to what happens for other Ng-molecule systems) approximately as bound as the T-shaped form. It is also shown how and why XB is inhibited when the halogen molecule is in the Π excited state.

View Article and Find Full Text PDF