The KCL036 human embryonic stem cell line was derived from an embryo donated for research that carried an autosomal dominant mutation affecting one allele of the HTT gene encoding huntingtin (38 trinucleotide repeats; 14 for the normal allele). The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment.
View Article and Find Full Text PDFThe KCL018 human embryonic stem cell line was derived from an embryo donated for research that carried an autosomal dominant mutation affecting one allele of the DMPK gene encoding the dystrophia myotonica protein kinase (2200 trinucleotide repeats; 14 for the normal allele). The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment.
View Article and Find Full Text PDFThe KCL033 human embryonic stem cell line was derived from a normal healthy blastocyst donated for research. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment and under current Good Manufacturing Practice (cGMP) standards.
View Article and Find Full Text PDFThe KCL013 human embryonic stem cell line was derived from an embryo donated for research that carried an autosomal dominant mutation affecting one allele of the HTT gene encoding huntingtin (42 trinucleotide repeats; 17 for the normal allele). The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment.
View Article and Find Full Text PDFThe KCL028 human embryonic stem cell line was derived from an embryo donated for research that carried an autosomal dominant mutation affecting one allele of the HTT gene encoding huntingtin (43 trinucleotide repeats; 21 for the normal allele). The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment.
View Article and Find Full Text PDFThe KCL027 human embryonic stem cell line was derived from an embryo donated for research that carried an autosomal dominant mutation affecting one allele of the HTT gene encoding huntingtin (43 trinucleotide repeats; 21 for the normal allele). The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment.
View Article and Find Full Text PDFThe KCL017 human embryonic stem cell line was derived from an embryo donated for research that carried an autosomal dominant mutation affecting splicing site of the VHL gene encoding von Hippel-Lindau tumor suppressor E3 ubiquitin protein ligase (676+3A>T). The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment.
View Article and Find Full Text PDFThe KCL012 human embryonic stem cell line was derived from an embryo donated for research that carried an autosomal dominant mutation affecting one allele of the HTT gene encoding huntingtin (46 trinucleotide repeats; 17 for the normal allele). The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment.
View Article and Find Full Text PDFThe KCL025 human embryonic stem cell line was derived from an embryo donated for research that carried an autosomal dominant mutation in the NF1 gene encoding neurofibromin (c.3739-3742 ΔTTTG). Mutations in this gene have been linked to neurofibromatosis type 1, juvenile myelomonocytic leukemia and Watson syndrome.
View Article and Find Full Text PDFThe KCL026 human embryonic stem cell line was derived from an embryo donated for research that carried a mutation in the SMN1 gene encoding survival of motor neuron 1, telomeric (exons 7 and 8 deletion). Mutations in this gene are associated with spinal muscular atrophy. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts.
View Article and Find Full Text PDFThe KCL024 human embryonic stem cell line was derived from an embryo donated for research that carried an autosomal dominant mutation in the NF1 gene encoding neurofibromin (c.3739-3742 ∆TTTG). Mutations in this gene have been linked to neurofibromatosis type 1, juvenile myelomonocytic leukemia and Watson syndrome.
View Article and Find Full Text PDFThe KCL035 human embryonic stem cell line was derived from an embryo donated for research that carried a mutation in the HBB gene, which is linked to the β-thalassemia syndrome. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment.
View Article and Find Full Text PDFThe KCL031 human embryonic stem cell line was derived from a normal healthy blastocyst donated for research. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment and under current Good Manufacturing Practice (cGMP) standards.
View Article and Find Full Text PDFThe KCL029 human embryonic stem cell line was derived from an embryo donated for research that carried a c.814T>C mutation in the WAS gene, which is linked to the Wiskott-Aldrich syndrome, a rare, inherited, X-linked, recessive disease characterized by immune dysregulation and microthrombocytopenia. The line is also carrier for a mutation p.
View Article and Find Full Text PDFThe KCL034 human embryonic stem cell line was derived from a normal healthy blastocyst donated for research. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment and under current Good Manufacturing Practice (cGMP) standards.
View Article and Find Full Text PDFThe KCL021 human embryonic stem cell line was derived from an embryo donated for research that carried a ΔF508 mutation affecting the CFTR gene encoding the cystic fibrosis transmembrane conductance regulator. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment.
View Article and Find Full Text PDFThe KCL040 human embryonic stem cell line was derived from a normal healthy blastocyst donated for research. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment and under current Good Manufacturing Practice (cGMP) standards.
View Article and Find Full Text PDFThe KCL039 human embryonic stem cell line was derived from a normal healthy blastocyst donated for research. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment and under current Good Manufacturing Practice (cGMP) standards.
View Article and Find Full Text PDFThe KCL037 human embryonic stem cell line was derived from a normal healthy blastocyst donated for research. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment and under current Good Manufacturing Practice (cGMP) standards.
View Article and Find Full Text PDFThe KCL038 human embryonic stem cell line was derived from a normal healthy blastocyst donated for research. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment and under current Good Manufacturing Practice (cGMP) standards.
View Article and Find Full Text PDFThe KCL016 human embryonic stem cell line was derived from an embryo donated for research that carried an autosomal dominant mutation affecting splicing site of the VHL gene encoding von Hippel-Lindau tumor suppressor E3 ubiquitin protein ligase (676+3A>T). The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment.
View Article and Find Full Text PDFThe KCL032 human embryonic stem cell line was derived from a normal healthy blastocyst donated for research. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment and under current Good Manufacturing Practice (cGMP) standards.
View Article and Find Full Text PDFBackground: Human embryonic and induced pluripotent stem cells (hESC and hiPSC) have tremendous potential for clinical implementation. In spite of all hurdles and controversy, clinical trials in treatment of spinal cord injury, macular degeneration of retina, type 1 diabetes and heart failure are already ongoing.
Sources Of Data: ClinicalTrials.
Aim: Umbilical cord contains, within Wharton's jelly (WJ), multipotent mesenchymal stromal/stem cells (MSCs) of fetal origin that can be isolated and expanded in vitro with a minimal manipulation and very high efficiency. Our aim was to develop a highly reproducible protocol that has the unique potential to be scaled up and adapted to cGMP requirements for the use in cellular therapy.
Results: We found that derivation of WJ MSCs under defined conditions in low oxygen resulted in several folds higher populations of MSCA-1(+) cells (6.
Standardization guidelines for human pluripotent stem cells are still very broadly defined, despite ongoing clinical trials in the U.S., U.
View Article and Find Full Text PDF