In this paper we study the diffusion of an SIS-type epidemics on a network under the presence of a random environment, that enters in the definition of the infection rates of the nodes. Accordingly, we model the infection rates in the form of independent stochastic processes. To analyze the problem, we apply a mean field approximation, which allows to get a stochastic differential equations for the probability of infection in each node, and classical tools about stability, which require to find suitable Lyapunov's functions.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
July 2014
We consider a model for the diffusion of epidemics in a population that is partitioned into local communities. In particular, assuming a mean-field approximation, we analyze a continuous-time susceptible-infected-susceptible (SIS) model that has appeared recently in the literature. The probability by which an individual infects individuals in its own community is different from the probability of infecting individuals in other communities.
View Article and Find Full Text PDF