Gene therapy holds great promise for the treatment of severe diseases, and adeno-associated virus (AAV) vectors have emerged as valuable tools in this field. However, challenges such as immunogenicity and high production costs complicate the commercial viability of AAV-based therapies. To overcome these barriers, improvements in production yield, driven through the availability of robust and sensitive characterization techniques that allow for the monitoring of critical quality attributes to deepen product and process understanding are crucial.
View Article and Find Full Text PDFAdeno-associated viral (AAV) vectors are widely used for gene therapy, providing treatment for diseases caused by absent or defective genes. Despite the success of gene therapy, AAV manufacturing is still challenging, with production yields being limited. With increased patient demand, improvements in host cell productivity through various engineering strategies will be necessary.
View Article and Find Full Text PDFMouse APOBEC3 (mA3) is a cytidine deaminase that can act on the single-stranded DNA reverse transcripts of retroviruses resulting in G→A hypermutation of proviral DNA. Many mA3 studies have used NIH 3T3 cells assuming that endogenous mA3 production was negligible. We developed a monoclonal antibody specific for mA3 that reveals detectable mA3 in NIH 3T3 cells and we demonstrate that AKV released from the cells undergoes G→A hypermutation.
View Article and Find Full Text PDFClonal cell lines derived from cultures infected with a polytropic MuLV release vastly different levels of infectious virions ranging from undetectable to very high. Low producing clones release an overwhelming proportion of non-infectious virions containing retroviral RNA but deficient in the Env protein. Non-infectious virion production is not due to an inability of the cells to support infectious MuLV production or to an inherent replicative defectiveness of the proviruses.
View Article and Find Full Text PDFWe have demonstrated in a mouse model that infection with a retrovirus can lead not only to the generation of recombinants between exogenous and endogenous gammaretrovirus, but also to the mobilization of endogenous proviruses by pseudotyping entire polytropic proviral transcripts and facilitating their infectious spread to new cells. However, the frequency of this occurrence, the kinetics, and the identity of mobilized endogenous proviruses was unclear. Here we find that these mobilized transcripts are detected after only one day of infection.
View Article and Find Full Text PDFA total of 31 of thiourea derivatives was prepared reacting 3-(trifluoromethyl)aniline and commercial aliphatic and aromatic isothiocyanates. The yields varied from 35% to 82%. All compounds were evaluated in vitro for antimicrobial activity.
View Article and Find Full Text PDFA series of new thiourea derivatives of 1,3-thiazole have been synthesized. All obtained compounds were tested in vitro against a number of microorganisms, including Gram-positive cocci, Gram-negative rods and Candida albicans. Compounds were also tested for their in vitro tuberculostatic activity against the Mycobacterium tuberculosis H37Rv strain, as well as two 'wild' strains isolated from tuberculosis patients.
View Article and Find Full Text PDFAPOBEC3 proteins are restriction factors that induce G→A hypermutation in retroviruses during replication as a result of cytidine deamination of minus-strand DNA transcripts. However, the mechanism of APOBEC inhibition of murine leukemia viruses (MuLVs) does not appear to be G→A hypermutation and is unclear. In this report, the incorporation of mA3 in virions resulted in a loss in virion reverse transcriptase (RT) activity and RT fidelity that correlated with the loss of virion-specific infectivity.
View Article and Find Full Text PDFMany monoclonal antibodies (MAbs) reactive with various proteins of murine leukemia viruses (MuLVs) have been developed. In this report two additional MAbs with differing and unusual specificities are described. MAb 573 is reactive with the envelope protein of all MuLVs tested including viruses in the ecotropic, xenotropic, polytropic and amphotropic classes.
View Article and Find Full Text PDF