IEEE Int Conf Biom Theory Appl Syst
September 2023
The standard benchmark metric for 3D face reconstruction is the geometric error between reconstructed meshes and the ground truth. Nearly all recent reconstruction methods are validated on real ground truth scans, in which case one needs to establish point correspondence prior to error computation, which is typically done with the Chamfer (i.e.
View Article and Find Full Text PDFHuman pose estimation is an important Computer Vision problem, whose goal is to estimate the human body through joints. Currently, methods that employ deep learning techniques excel in the task of 2D human pose estimation. However, the use of 3D poses can bring more accurate and robust results.
View Article and Find Full Text PDFWe propose an automatic method to estimate self-reported pain based on facial landmarks extracted from videos. For each video sequence, we decompose the face into four different regions and the pain intensity is measured by modeling the dynamics of facial movement using the landmarks of these regions. A formulation based on Gram matrices is used for representing the trajectory of landmarks on the Riemannian manifold of symmetric positive semi-definite matrices of fixed rank.
View Article and Find Full Text PDFAutomatic facial expression recognition is essential for many potential applications. Thus, having a clear overview on existing datasets that have been investigated within the framework of face expression recognition is of paramount importance in designing and evaluating effective solutions, notably for neural networks-based training. In this survey, we provide a review of more than eighty facial expression datasets, while taking into account both macro- and micro-expressions.
View Article and Find Full Text PDFEstimating the 3D shape of objects from monocular images is a well-established and challenging task in the computer vision field. Further challenges arise when highly deformable objects, such as human faces or bodies, are considered. In this work, we address the problem of estimating the 3D shape of a human body from single images.
View Article and Find Full Text PDFProc IAPR Int Conf Pattern Recogn
January 2021
We propose an automatic method for pain intensity measurement from video. For each video, pain intensity was measured using the dynamics of facial movement using 66 facial points. Gram matrices formulation was used for facial points trajectory representations on the Riemannian manifold of symmetric positive semi-definite matrices of fixed rank.
View Article and Find Full Text PDFFalls are one of the most critical health care risks for elderly people, being, in some adverse circumstances, an indirect cause of death. Furthermore, demographic forecasts for the future show a growing elderly population worldwide. In this context, models for automatic fall detection and prediction are of paramount relevance, especially AI applications that use ambient, sensors or computer vision.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
October 2022
The 3D Morphable Model (3DMM) is a powerful statistical tool for representing 3D face shapes. To build a 3DMM, a training set of face scans in full point-to-point correspondence is required, and its modeling capabilities directly depend on the variability contained in the training data. Thus, to increase the descriptive power of the 3DMM, establishing a dense correspondence across heterogeneous scans with sufficient diversity in terms of identities, ethnicities, or expressions becomes essential.
View Article and Find Full Text PDFFacial Action Units (AUs) correspond to the deformation/contraction of individual facial muscles or their combinations. As such, each AU affects just a small portion of the face, with deformations that are asymmetric in many cases. Generating and analyzing AUs in 3D is particularly relevant for the potential applications it can enable.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
February 2022
In this work, we propose a novel approach for generating videos of the six basic facial expressions given a neutral face image. We propose to exploit the face geometry by modeling the facial landmarks motion as curves encoded as points on a hypersphere. By proposing a conditional version of manifold-valued Wasserstein generative adversarial network (GAN) for motion generation on the hypersphere, we learn the distribution of facial expression dynamics of different classes, from which we synthesize new facial expression motions.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
October 2020
In this article, we propose a new approach for facial expression recognition (FER) using deep covariance descriptors. The solution is based on the idea of encoding local and global deep convolutional neural network (DCNN) features extracted from still images, in compact local and global covariance descriptors. The space geometry of the covariance matrices is that of symmetric positive definite (SPD) matrices.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
January 2020
In this paper, we propose a novel space-time geometric representation of human landmark configurations and derive tools for comparison and classification. We model the temporal evolution of landmarks as parametrized trajectories on the Riemannian manifold of positive semidefinite matrices of fixed-rank. Our representation has the benefit to bring naturally a second desirable quantity when comparing shapes-the spatial covariance-in addition to the conventional affine-shape representation.
View Article and Find Full Text PDFFace recognition "in the wild" has been revolutionized by the deployment of deep learning based approaches. In fact, it has been extensively demonstrated that Deep Convolutional Neural Networks (DCNNs) are powerful enough to overcome most of the limits that affected face recognition algorithms based on hand-crafted features. These include variations in illumination, pose, expression and occlusion, to mention some.
View Article and Find Full Text PDFIEEE Trans Cybern
December 2014
In this paper, we present an automatic approach for facial expression recognition from 3-D video sequences. In the proposed solution, the 3-D faces are represented by collections of radial curves and a Riemannian shape analysis is applied to effectively quantify the deformations induced by the facial expressions in a given subsequence of 3-D frames. This is obtained from the dense scalar field, which denotes the shooting directions of the geodesic paths constructed between pairs of corresponding radial curves of two faces.
View Article and Find Full Text PDFIEEE Trans Image Process
January 2015
In this paper, we present a novel and original framework, which we dubbed mesh-local binary pattern (LBP), for computing local binary-like-patterns on a triangular-mesh manifold. This framework can be adapted to all the LBP variants employed in 2D image analysis. As such, it allows extending the related techniques to mesh surfaces.
View Article and Find Full Text PDFRecognizing human actions in 3-D video sequences is an important open problem that is currently at the heart of many research domains including surveillance, natural interfaces and rehabilitation. However, the design and development of models for action recognition that are both accurate and efficient is a challenging task due to the variability of the human pose, clothing and appearance. In this paper, we propose a new framework to extract a compact representation of a human action captured through a depth sensor, and enable accurate action recognition.
View Article and Find Full Text PDFIn this paper, we present a novel approach to 3D face matching that shows high effectiveness in distinguishing facial differences between distinct individuals from differences induced by nonneutral expressions within the same individual. The approach takes into account geometrical information of the 3D face and encodes the relevant information into a compact representation in the form of a graph. Nodes of the graph represent equal width isogeodesic facial stripes.
View Article and Find Full Text PDF