Publications by authors named "Stefanie Zollmann"

The maturity of augmented reality (AR) technology allows for expansion into real-world applications, including visualizations for on-site sports spectating. However, it is crucial to understand the factors influencing user experience in AR applications. To optimize user experience, we conducted a user study where participants adjusted parameters to determine noticeable and disruptive values of latency, registration accuracy, and jitter using a mobile indirect AR prototype that simulates a rugby stadium experience.

View Article and Find Full Text PDF

Rapidly developing Redirected Walking (ROW) technologies have enabled VR applications to immerse users in large virtual environments (VE) while actually walking in relatively small physical environments (PE). When an unavoidable collision emerges in a PE, the ROW controller suspends the user's immersive experience and resets the user to a new direction in PE. Existing ROW methods mainly aim to reduce the number of resets.

View Article and Find Full Text PDF

Head tracking in head-mounted displays (HMDs) enables users to explore a 360-degree virtual scene with free head movements. However, for seated use of HMDs such as users sitting on a chair or a couch, physically turning around 360-degree is not possible. Redirection techniques decouple tracked physical motion and virtual motion, allowing users to explore virtual environments with more flexibility.

View Article and Find Full Text PDF

Redirected walking (RDW) allows users to explore virtual environments in limited physical spaces by imperceptibly steering them away from obstacles and space boundaries. However, even with those techniques, the risk of collision cannot always be avoided. For such situations, resetting techniques have been proposed to provide an immediate adjustment of the physical walking direction of a user.

View Article and Find Full Text PDF

In recent years, the development of Augmented Reality (AR) frameworks made AR application development widely accessible to developers without AR expert background. With this development, new application fields for AR are on the rise. This comes with an increased need for visualization techniques that are suitable for a wide range of application areas.

View Article and Find Full Text PDF

We present computational phase-modulated eyeglasses, a see-through optical system that modulates the view of the user using phase-only spatial light modulators (PSLM). A PSLM is a programmable reflective device that can selectively retardate, or delay, the incoming light rays. As a result, a PSLM works as a computational dynamic lens device.

View Article and Find Full Text PDF

Separate research streams have identified synchrony and arousal as two factors that might contribute to the effects of human rituals on social cohesion and cooperation. But no research has manipulated these variables in the field to investigate their causal - and potentially interactive - effects on prosocial behaviour. Across four experimental sessions involving large samples of strangers, we manipulated the synchronous and physiologically arousing affordances of a group marching task within a sports stadium.

View Article and Find Full Text PDF

Augmented Reality is a technique that enables users to interact with their physical environment through the overlay of digital information. While being researched for decades, more recently, Augmented Reality moved out of the research labs and into the field. While most of the applications are used sporadically and for one particular task only, current and future scenarios will provide a continuous and multi-purpose user experience.

View Article and Find Full Text PDF

Social psychology is fundamentally the study of individuals in groups, yet there remain basic unanswered questions about group formation, structure, and change. We argue that the problem is methodological. Until recently, there was no way to track who was interacting with whom with anything approximating valid resolution and scale.

View Article and Find Full Text PDF

Micro aerial vehicles equipped with high-resolution cameras can be used to create aerial reconstructions of an area of interest. In that context automatic flight path planning and autonomous flying is often applied but so far cannot fully replace the human in the loop, supervising the flight on-site to assure that there are no collisions with obstacles. Unfortunately, this workflow yields several issues, such as the need to mentally transfer the aerial vehicle’s position between 2D map positions and the physical environment, and the complicated depth perception of objects flying in the distance.

View Article and Find Full Text PDF