Publications by authors named "Stefanie Walther"

We have developed a new bioinformatics framework for the analysis of rearranged bovine heavy chain immunoglobulin (Ig) variable regions by combining and refining widely used alignment algorithms. This bioinformatics framework allowed us to investigate alignments of heavy chain framework regions (FRHs) and the separate alignments of FRHs and heavy chain complementarity determining regions (CDRHs) to determine their germline origin in the four cattle breeds Aubrac, German Black Pied, German Simmental, and Holstein Friesian. Now it is also possible to specifically analyze Ig heavy chains possessing exceptionally long CDR3Hs.

View Article and Find Full Text PDF

The optimal treatment of schizophrenia patients requires integration of medical and psychosocial inputs. In Germany, various health-care service providers and institutions are involved in the treatment process. Early and continuous treatment is important but often not possible because of the fragmented medical care system in Germany.

View Article and Find Full Text PDF

Our understanding of how equine immunoglobulin genes are organized has increased significantly in recent years. For equine heavy chains, 52 IGHV, 40 IGHD, 8 IGHJ and 11 IGHC are present. Seven of these IGHCs are gamma chain genes.

View Article and Find Full Text PDF

Key Points: Impaired calcium (Ca(2+)) signalling is the main contributor to depressed ventricular contractile function and occurrence of arrhythmia in heart failure (HF). Here we report that in atrial cells of a rabbit HF model, Ca(2+) signalling is enhanced and we identified the underlying cellular mechanisms. Enhanced Ca(2+) transients (CaTs) are due to upregulation of inositol-1,4,5-trisphosphate receptor induced Ca(2+) release (IICR) and decreased mitochondrial Ca(2+) sequestration.

View Article and Find Full Text PDF

Urocortin 2 (Ucn2) is a cardioactive peptide exhibiting beneficial effects in normal and failing heart. In cardiomyocytes, it elicits cAMP- and Ca(2+)-dependent positive inotropic and lusitropic effects. We tested the hypothesis that, in addition, Ucn2 activates cardiac nitric oxide (NO) signaling and elucidated the underlying signaling pathways and mechanisms.

View Article and Find Full Text PDF

Urocortin II (UcnII), a cardioactive peptide with beneficial effects in normal and failing hearts, is also arrhythmogenic and prohypertrophic. We demonstrated that cardiac effects are mediated by a phosphatidylinositol-3 kinase (PI3K)/Akt kinase (Akt)/endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) signaling pathways. Nuclear factor of activated T-cells (NFAT) transcription factors play a key role in the regulation of gene expression in cardiac development, maintenance of an adult differentiated cardiac phenotype, and remodeling processes in cardiac hypertrophy and heart failure (HF).

View Article and Find Full Text PDF

Objectives: This study sought to explore whether subclinical alterations of sarcoplasmic reticulum (SR) Ca(2+) release through cardiac ryanodine receptors (RyR2) aggravate cardiac remodeling in mice carrying a human RyR2(R4496C+/-) gain-of-function mutation in response to pressure overload.

Background: RyR2 dysfunction causes increased diastolic SR Ca(2+) release associated with arrhythmias and contractile dysfunction in inherited and acquired cardiac diseases, such as catecholaminergic polymorphic ventricular tachycardia and heart failure (HF).

Methods: Functional and structural properties of wild-type and catecholaminergic polymorphic ventricular tachycardia-associated RyR2(R4496C+/-) hearts were characterized under conditions of pressure overload induced by transverse aortic constriction (TAC).

View Article and Find Full Text PDF

Exceptionally long third complementarity determining regions of the heavy chain (CDR3H) were previously described as a specificity of bovine IgG and IgM immunoglobulins. In addition, the genomic organization of the immunoglobulin heavy chain locus remains to be elucidated with a special focus on the number of variable segments (IGHV). By analyzing the variable regions according to the isotype-specific PCR using cDNA-PCR, we were able to prove the existence of exceptional long CDR3H in all bovine isotypes.

View Article and Find Full Text PDF

Quantification of subcellularly resolved Ca²⁺ signals in cardiomyocytes is essential for understanding Ca²⁺ fluxes in excitation-contraction and excitation-transcription coupling. The properties of fluorescent indicators in intracellular compartments may differ, thus affecting the translation of Ca²⁺-dependent fluorescence changes into [Ca²⁺] changes. Therefore, we determined the in situ characteristics of a frequently used Ca²⁺ indicator, Fluo-4, and a ratiometric Ca²⁺ indicator, Asante Calcium Red, and evaluated their use for reporting and quantifying cytoplasmic and nucleoplasmic Ca²⁺ signals in isolated cardiomyocytes.

View Article and Find Full Text PDF

Background And Purpose: Urocortin 2 is beneficial in heart failure, but the underlying cellular mechanisms are not completely understood. Here we have characterized the functional effects of urocortin 2 on mouse cardiomyocytes and elucidated the underlying signalling pathways and mechanisms.

Experimental Approach: Mouse ventricular myocytes were field-stimulated at 0.

View Article and Find Full Text PDF

Aims: Mutations in the cardiac ryanodine receptor Ca(2+) release channel, RyR2, underlie catecholaminergic polymorphic ventricular tachycardia (CPVT), an inherited life-threatening arrhythmia. CPVT is triggered by spontaneous RyR2-mediated sarcoplasmic reticulum (SR) Ca(2+) release in response to SR Ca(2+) overload during beta-adrenergic stimulation. However, whether elevated SR Ca(2+) content--in the absence of protein kinase A activation--affects RyR2 function and arrhythmogenesis in CPVT remains elusive.

View Article and Find Full Text PDF

Aims: Stretch is an important regulator of atrial function. The functional effects of stretch on human atrium, however, are poorly understood. Thus, we characterized the stretch-induced force response in human atrium and evaluated the underlying cellular mechanisms.

View Article and Find Full Text PDF

Nuclear Ca2+ plays a key role in the regulation of gene expression. Inositol (1,4,5)-trisphosphate [Ins(1,4,5)P3)] might be an important regulator of nuclear Ca2+ but its contribution to nuclear Ca2+ signalling in adult cardiomyocytes remains elusive. We tested the hypothesis that endothelin-1 enhances nuclear Ca2+ concentration transients (CaTs) in rabbit atrial myocytes through Ins(1,4,5)P3-induced Ca(2+) release from perinuclear stores.

View Article and Find Full Text PDF

Objective: Urocortin II (UcnII), a peptide of the corticotropin-releasing factor (CRF) family, exerts profound actions on the cardiovascular system. Direct effects of UcnII on adult cardiomyocytes have not been evaluated before. Our aim was to characterize functional effects of UcnII on cardiomyocytes and to elucidate the underlying signaling pathway(s) and cellular mechanisms.

View Article and Find Full Text PDF

Background: Insulin has been shown to exert positive inotropic effects in several in vitro and in vivo models, but signal transduction and substrate dependency remain unclear. We examined inotropic responses and signal transduction mechanisms of insulin in human myocardium.

Methods And Results: Experiments were performed in isolated trabeculae from end-stage failing hearts of 58 nondiabetic and 3 diabetic patients undergoing heart transplantation.

View Article and Find Full Text PDF