Publications by authors named "Stefanie Wallisch"

Alkane degrading microorganisms play an important role for the bioremediation of petrogenic contaminated environments. In this study, we investigated the effects of compost addition on the abundance and diversity of bacteria harboring the alkane monooxygenase gene (alkB) in an oil-contaminated soil originated from an industrial zone in Celje, Slovenia (Technosol). Soil without any amendments (control soil) and soil amended with two composts differing in their maturation stage and nutrient availability, were incubated under controlled conditions in a microcosm experiment and sampled after 0, 6, 12, and 36 weeks of incubation.

View Article and Find Full Text PDF

Microbial communities play an important role in cheese ripening and determine the flavor and taste of different cheese types to a large extent. However, under adverse conditions human pathogens may colonize cheese samples during ripening and may thus cause severe outbreaks of diarrhoea and other diseases. Therefore in the present study we investigated the bacterial community structure of three raw ewe's milk cheese types, which are produced without the application of starter cultures during ripening from two production sites based on fingerprinting in combination with next generation sequencing of 16S rRNA gene amplicons.

View Article and Find Full Text PDF

We developed an improved protocol, allowing the simultaneous extraction of DNA and RNA from soil using phenol-chloroform with subsequent column-based separation of DNA and RNA (PCS). We compared this new approach with the well established protocol published by Griffiths et al. (2000), where DNA and RNA are separated by selective enzymatic digestions and two commercial kits used for DNA or RNA extraction, respectively, using four different agricultural soils.

View Article and Find Full Text PDF

A set of primers was developed for the detection, identification and quantification of common Trichoderma species in soil samples. Based on a broad range master alignment primers were derived to amplify an approximate 540 bp fragment comprising the internal transcribed spacer region 1 (ITS 1), 5.8S rDNA and internal transcribed spacer region 2 (ITS 2) from all taxonomic Clades of the genus Trichoderma.

View Article and Find Full Text PDF