Infections are a key source of stress to the hematopoietic system. While infections consume short-lived innate immune cells, their recovery depends on quiescent hematopoietic stem cells (HSCs) with long-term self-renewal capacity. Both chronic inflammatory stress and bacterial infections compromise competitive HSC capacity and cause bone marrow (BM) failure.
View Article and Find Full Text PDFBackground: Defects in phagocytic nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) function cause chronic granulomatous disease (CGD), a primary immunodeficiency characterized by dysfunctional microbicidal activity and chronic inflammation.
Objective: We sought to study the effect of chronic inflammation on the hematopoietic compartment in patients and mice with X-linked chronic granulomatous disease (X-CGD).
Methods: We used immunostaining and functional analyses to study the hematopoietic compartment in patients with CGD.
The serine protease granzyme B (GzmB) is stored in the granules of cytotoxic T and NK cells and facilitates immune-mediated destruction of virus-infected cells. In this study, we use genetic tools to report novel roles for GzmB as an important regulator of hematopoietic stem cell (HSC) function in response to stress. HSCs lacking the GzmB gene show improved bone marrow (BM) reconstitution associated with increased HSC proliferation and mitochondrial activity.
View Article and Find Full Text PDF