We present two different procedures for the synthesis of poly[4-(1',3'-diethyl-1',3',2'-benzodiazaborolyl)styrene] () and poly[4-(1',3'-diphenyl-1',3',2'-benzodiazaborolyl)styrene] (). The new polymers were fully characterized by GPC, multinuclear NMR, and elemental analysis. The thermal properties and stability were studied by DSC and TGA, and the optical characteristics were examined by absorption and time-resolved fluorescence spectroscopy.
View Article and Find Full Text PDFFour linear π-conjugated systems with 1,3-diethyl-1,3,2-benzodiazaborolyl [C(6)H(4)(NEt)(2)B] as a π-donor at one end and dimesitylboryl (BMes(2)) as a π-acceptor at the other end were synthesized. These unusual push-pull systems contain phenylene (-1,4-C(6)H(4)-; 1), biphenylene (-4,4'-(1,1'-C(6)H(4))(2)-; 2), thiophene (-2,5-C(4)H(2)S-; 3), and dithiophene (-5,5'-(2,2'-C(4)H(2)S)(2)-; 4) as π-conjugated bridges and different types of three-coordinate boron moieties serving as both π-donor and π-acceptor. Molecular structures of 2, 3, and 4 were determined by single-crystal X-ray diffraction.
View Article and Find Full Text PDFStatic and time-resolved fluorescence studies were carried out to investigate the photophysical properties and fluoride sensing abilities of highly fluorescent thienyl-containing 1,3-diethyl-1,3,2-benzodiazaboroles. Absorption and fluorescence spectra were measured in various solvents, showing the fluorophores to emit in the visible wavelength region with colors varying from blue to orange and quantum yields ranging between 0.21 and 1.
View Article and Find Full Text PDFA series of diphenylacetylenes with one 1,3,2-benzodiazaborolyl end group (BDB) and a second end group X (X = H, OMe, NMe(2), SMe, CN and BDB) were synthesized using established 1,3,2-benzodiazaborole methodologies. The 1,3,2-benzodiazaborolyldiphenylacetylenes with X = p-H (4), p-OMe (5), p-NMe(2) (6), p-SMe (7) and p-CN (8) end groups are functionalized with cyano groups at the central ring in an ortho-position to the triple bond. Molecular structures of 2, 3, 5, 6 and 7 were determined by X-ray diffraction.
View Article and Find Full Text PDFMisfolding and aggregation of amyloidogenic polypeptides lie at the root of many neurodegenerative diseases. Whilst protein aggregation can be readily studied in vitro by established biophysical techniques, direct observation of the nature and kinetics of aggregation processes taking place in vivo is much more challenging. We describe here, however, a Förster resonance energy transfer sensor that permits the aggregation kinetics of amyloidogenic proteins to be quantified in living systems by exploiting our observation that amyloid assemblies can act as energy acceptors for variants of fluorescent proteins.
View Article and Find Full Text PDFA series of pi-conjugated systems with two and three 1,3-diethyl-1,3,2-benzodiazaborolyl end-groups was synthesised in 58-91% yields using established 1,3,2-diazaborole methodologies. The bis(diazaborolyl) compounds contain thiophene -2,5-C4H2S- (2a), dithiophene -5,5'-(2,2'-C4H2S)2- (2b), phenylene -1,4-C6H4- (2c), biphenylene -4,4'-(1,1'-(C6H4)2)- (2d) and dioctylfluorene -2,7-(9,9-(C8H7)2C11H6)- (2e) bridges. The three-way linkers in the tris(diazaborolyl) assemblies contain a central phenylene unit -1,3,5-C6H3- linked to the borolyl end groups via thiophene -2,5-C4H2S- (3a), directly bonded (3b) or via phenylene -1,4-C6H4- (3c) units.
View Article and Find Full Text PDFNew 2-arylalkynyl benzo-1,3,2-diazaboroles, 2-(4'-XC(6)H(4)C[triple bond, length as m-dash]C)-1,3-Et(2)-1,3,2-N(2)BC(6)H(4) (X =Me ; MeO ; MeS ; Me(2)N ), were prepared from B-bromodiazaborole, 2-Br-1,3-Et(2)-1,3,2-N(2)BC(6)H(4), with the appropriate lithiated arylacetylene, ArC[triple bond, length as m-dash]CLi. Molecular structures of , and were determined by X-ray diffraction studies. UV-vis and luminescence spectroscopic studies on these diazaboroles reveal intense blue/violet fluorescence with very large quantum yields of 0.
View Article and Find Full Text PDF