The identification of targetomes remains a challenge given the pleiotropic effect of miRNAs, the limited effects of miRNAs on individual targets, and the sheer number of estimated miRNA-target gene interactions (MTIs), which is around 44,571,700. Currently, targetome identification for single miRNAs relies on computational evidence and functional studies covering smaller numbers of targets. To ensure that the targetome analysis could be experimentally verified by functional assays, we employed a systematic approach and explored the targetomes of four miRNAs (miR-129-5p, miR-129-1-3p, miR-133b, and miR-873-5p) by analyzing 410 predicted target genes, both of which were previously associated with Parkinson's disease (PD).
View Article and Find Full Text PDFBackground: Although a pivotal role of microRNA (miRNA, miR) in the pathogenesis of Huntington's disease (HD) is increasingly recognized, the molecular functions of miRNAs in the pathomechanisms of HD await further elucidation. One of the miRNAs that have been associated with HD is miR-34a-5p, which was deregulated in the mouse R6/2 model and in human HD brain tissues.
Methods: The aim of our study was to demonstrate interactions between miR-34a-5p and HD associated genes.
Among the concepts in biology that are widely taken granted is a potentiated cooperative effect of multiple miRNAs on the same target. This strong hypothesis contrasts insufficient experimental evidence. The quantity as well as the quality of required side constraints of cooperative binding remain largely hidden.
View Article and Find Full Text PDFMicroRNAs are regulators of gene expression. A wide-spread, yet not validated, assumption is that the targetome of miRNAs is non-randomly distributed across the transcriptome and that targets share functional pathways. We developed a computational and experimental strategy termed high-throughput miRNA interaction reporter assay (HiTmIR) to facilitate the validation of target pathways.
View Article and Find Full Text PDFBackground: In 2016 the first-in-human phase I study of a miRNA-based cancer therapy with a liposomal mimic of microRNA-34a-5p (miR-34a-5p) was closed due to five immune related serious adverse events (SAEs) resulting in four patient deaths. For future applications of miRNA mimics in cancer therapy it is mandatory to unravel the miRNA effects both on the tumor tissue and on immune cells. Here, we set out to analyze the impact of miR-34a-5p over-expression on the CXCL10/CXCL11/CXCR3 axis, which is central for the development of an effective cancer control.
View Article and Find Full Text PDFT cells are central to the immune response against various pathogens and cancer cells. Complex networks of transcriptional and post-transcriptional regulators, including microRNAs (miRNAs), coordinate the T cell activation process. Available miRNA datasets, however, do not sufficiently dissolve the dynamic changes of miRNA controlled networks upon T cell activation.
View Article and Find Full Text PDFNeurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD) are characterized by the accumulation of misfolded proteins in the endoplasmic reticulum (ER) and the unfolded protein response (UPR). Modulating the UPR is one of the major challenges to counteract the development of neurodegenerative disorders and other diseases with affected UPR. Here, we show that miR-34a-5p directly targets the IRE1α branch of the UPR, including the genes , , and .
View Article and Find Full Text PDFBackground: Micro(mi)RNAs are increasingly recognized as central regulators of immune cell function. While it has been predicted that miRNAs have multiple targets, the majority of these predictions still await experimental confirmation. Here, miR-34a, a well-known tumor suppressor, is analyzed for targeting genes involved in immune system processes of leucocytes.
View Article and Find Full Text PDFNF-κB functions as modulator of T cell receptor-mediated signaling and transcriptional regulator of miR-34a. Our in silico analysis revealed that miR-34a impacts the NF-κB signalosome with miR-34a binding sites in 14 key members of the NF-κB signaling pathway. Functional analysis identified five target genes of miR-34a including PLCG1, CD3E, PIK3CB, TAB2, and NFΚBIA.
View Article and Find Full Text PDFAdjusting intracellular calcium signaling is an important feature in the regulation of immune cell function and survival. Here we show that miR-34a-5p, a small non-coding RNA that is deregulated in many common diseases, is a regulator of store-operated Ca entry (SOCE) and calcineurin signaling. Upon miR-34a-5p overexpression, we observed both a decreased depletion of ER calcium content and a decreased Ca influx through Ca release-activated Ca channels.
View Article and Find Full Text PDFMiRNAs play a central role in physiological and pathological processes. Both for the biological understanding and for their clinical application, it is essential to understand the interaction of miRNAs and their targets. Target identification largely hinges on in-silico prediction, which requires a complete consideration of miRNA binding sites within the UTRs of target genes.
View Article and Find Full Text PDFAlthough microRNAs have been recognized as central cellular regulators, there is an evident lack of knowledge about their targets. Here, we analyzed potential target genes for miR-148a functioning in Ras signaling in B cells, including SOS1 and SOS2. A dual-luciferase reporter assay showed significantly decreased luciferase activity upon ectopic overexpression of miR-148a in HEK-293T cells that were co-transfected with the 3'UTR of either SOS1 or SOS2.
View Article and Find Full Text PDFBackground: The dependency of miRNA abundance from physiological processes such as exercises remains partially understood. We set out to analyze the effect of physical exercises on miRNA profiles in blood and plasma of endurance and strength athletes in a systematic manner and correlated differentially abundant miRNAs in athletes to disease miRNAs biomarkers towards a better understanding of how physical exercise may confound disease diagnosis by miRNAs.
Methods: We profiled blood and plasma of 29 athletes before and after exercise.
Circulating miRNAs have been associated with numerous human diseases. The lack of understanding the functional roles of blood-born miRNAs limits, however, largely their value as disease marker. In a systems biology analysis we identified miR-34a as strongly associated with pathogenesis.
View Article and Find Full Text PDFSince the benefit of prostate-specific antigen (PSA) screening remains controversial, new non-invasive biomarkers for prostate carcinoma (PCa) are still required. There is evidence that microRNAs (miRNAs) in whole peripheral blood can separate patients with localized prostate cancer from healthy individuals. However, the potential of blood-based miRNAs for the differential diagnosis of PCa and benign prostatic hyperplasia (BPH) has not been tested.
View Article and Find Full Text PDFBackground: Circulating microRNAs (miRNAs) from blood are increasingly recognized as biomarker candidates for human diseases. Clinical routine settings frequently include blood sampling in tubes with EDTA as anticoagulant without considering the influence of phlebotomy on the overall miRNA expression pattern. We collected blood samples from six healthy individuals each in an EDTA blood collection tube.
View Article and Find Full Text PDFThere is an urgent need of comprehensive longitudinal analyses of circulating miRNA patterns to identify dynamic changes of miRNAs in cancer patients after surgery. Here we provide longitudinal analysis of 1,205 miRNAs in plasma samples of 26 patients after lung cancer resection at 8 time points over a period of 18 months and compare them to 12 control patients. First, we report longitudinal changes with respect to the number of detected miRNAs over time and identified a significantly increased number of miRNAs in patients developing metastases (p = 0.
View Article and Find Full Text PDFHuman glioblastomas are characterized by frequent DNA amplifications most often at chromosome regions 7p11.2 and 12q13-15. Although amplification is a well-known hallmark of glioblastoma genetics the function of most amplified genes in glioblastoma biology is not understood.
View Article and Find Full Text PDFThere is growing evidence that simultaneous analysis of multiple autoantibody reactions can be utilized for diagnosis of neoplasms. Using a set of 57 meningioma-associated antigens, we recently separated meningioma patients from individuals without known disease with an accuracy of 90.3%.
View Article and Find Full Text PDFBackground: Lung cancer is a very frequent and lethal tumor with an identifiable risk population. Cytological analysis and chest X-ray failed to reduce mortality, and CT screenings are still controversially discussed. Recent studies provided first evidence for the potential usefulness of autoantigens as markers for lung cancer.
View Article and Find Full Text PDFSeroreactivity profiling emerges as valuable technique for minimal invasive cancer detection. Recently, we provided first evidence for the applicability of serum profiling of glioma using a limited number of immunogenic antigens. Here, we screened 57 glioma and 60 healthy sera for autoantibodies against 1827 Escherichia coli expressed clones, including 509 in-frame peptide sequences.
View Article and Find Full Text PDFBackground: Chronic obstructive pulmonary disease (COPD) is a respiratory inflammatory condition with autoimmune features including IgG autoantibodies. In this study we analyze the complexity of the autoantibody response and reveal the nature of the antigens that are recognized by autoantibodies in COPD patients.
Methods: An array of 1827 gridded immunogenic peptide clones was established and screened with 17 sera of COPD patients and 60 healthy controls.
Purpose: Recent studies impressively showed the diagnostic potential of seroreactivity patterns for different tumor types, offering the prospect for low-cost screening of numerous tumor types simultaneously. One of the major challenges toward this goal is to prove that seroreactivity profiles do not only allow for identifying a tumor but also allow for distinguishing tumors from other pathologies of the same organ.
Experimental Design: We chose glioma as a model system and tested 325 sera (88 glioma, 95 intracranial tumors, 60 other brain pathologies, and 82 healthy controls) for seroreactivity on a panel of 35 antigens.
Serum-based diagnosis offers the prospect of early lung carcinoma detection and of differentiation between benign and malignant nodules identified by CT. One major challenge toward a future blood-based diagnostic consists in showing that seroreactivity patterns allow for discriminating lung cancer patients not only from normal controls but also from patients with non-tumor lung pathologies. We addressed this question for squamous cell lung cancer, one of the most common lung tumor types.
View Article and Find Full Text PDF