Publications by authors named "Stefanie Rakel"

Unlabelled: In most cases, macroautophagy/autophagy serves to alleviate cellular stress and acts in a pro-survival manner. However, the effects of autophagy are highly contextual, and autophagic cell death (ACD) is emerging as an alternative paradigm of (stress- and drug-induced) cell demise. AT 101 ([-]-gossypol), a natural compound from cotton seeds, induces ACD in glioma cells as confirmed here by CRISPR/Cas9 knockout of ATG5 that partially, but significantly rescued cell survival following AT 101 treatment.

View Article and Find Full Text PDF

Purpose: BAG3 is overexpressed in several malignancies and mediates a non-canonical, selective form of (macro)autophagy. By stabilizing pro-survival Bcl-2 proteins in complex with HSP70, BAG3 can also exert an apoptosis-antagonizing function. ABT-737 is a high affinity Bcl-2 inhibitor that fails to target Mcl-1.

View Article and Find Full Text PDF

Background: Acquired resistance to standard chemotherapy causes treatment failure in patients with metastatic bladder cancer. Overexpression of pro-survival Bcl-2 family proteins has been associated with a poor chemotherapeutic response, suggesting that Bcl-2-targeted therapy may be a feasible strategy in patients with these tumors. The small-molecule pan-Bcl-2 inhibitor (-)-gossypol (AT-101) is known to induce apoptotic cell death, but can also induce autophagy through release of the pro-autophagic BH3 only protein Beclin-1 from Bcl-2.

View Article and Find Full Text PDF

We present a 3D assay for the quantification of the autophagic flux in live cell spheroids by using the fluorescent reporter mRFP-GFP-LC3. The protocol describes the formation of the spheroids from the astrocytoma cell line U343, live long-term 3D fluorescence imaging of drug-treated spheroids, and the image processing workflow required to extract quantitative data on the autophagic flux.

View Article and Find Full Text PDF

Yeast cells can be killed upon expression of pro-apoptotic mammalian proteins. We have established a functional yeast survival screen that was used to isolate novel human anti-apoptotic genes overexpressed in treatment-resistant tumors. The screening of three different cDNA libraries prepared from metastatic melanoma, glioblastomas and leukemic blasts allowed for the identification of many yeast cell death-repressing cDNAs, including 28% of genes that are already known to inhibit apoptosis, 35% of genes upregulated in at least one tumor entity and 16% of genes described as both anti-apoptotic in function and upregulated in tumors.

View Article and Find Full Text PDF

Purpose: Glioblastomas are the most common and most deadly primary brain tumors. Here, we evaluated the chemotherapeutic effect of the natural polyphenol curcumin on glioma cells in vitro and in vivo using an immunocompetent orthotopic mouse model.

Experimental Design: Curcumin's effects on proliferation, cell cycle, migration, invasion, JAK/STAT3 signaling, STAT3 target gene expression, and STAT3C rescue experiments were determined in murine glioma cell lines in vitro.

View Article and Find Full Text PDF