Publications by authors named "Stefanie Preuss"

Mechanical ventilation with O-rich gas (MV-O) inhibits alveologenesis and lung growth. We previously showed that MV-O increased elastase activity and apoptosis in lungs of newborn mice, whereas elastase inhibition by elafin suppressed apoptosis and enabled lung growth. Pilot studies suggested that MV-O reduces lung expression of prosurvival factors phosphorylated epidermal growth factor receptor (pEGFR) and Krüppel-like factor 4 (Klf4).

View Article and Find Full Text PDF

Introduction: Considering that the number of malignant diseases in patients over 65 years of age is increasing, it often occurs that patients who carry a cardiac implanted electronic device must undergo radiotherapy. Ionizing radiation can disturb the function of the implantable cardioverter-defibrillator (ICD). As a result of this, an update of the DEGRO/DKG guidelines for radiotherapy of this patient group has been published.

View Article and Find Full Text PDF

Elafin is a potent reversible inhibitor of the pro-inflammatory proteases leukocyte elastase and protease 3. It is currently in clinical development for the use in postoperative inflammatory diseases. We investigated the pharmacokinetics of (99m)Tc-labeled elafin ((99m)Tc-Elafin) in blood and individual organs in rat after bolus intravenous injection using the single photon emission tomography (SPECT).

View Article and Find Full Text PDF

Elastin plays a pivotal role in lung development. We therefore queried if elastin haploinsufficient newborn mice (Eln(+/-)) would exhibit abnormal lung structure and function related to modified extracellular matrix (ECM) composition. Because mechanical ventilation (MV) has been linked to dysregulated elastic fiber formation in the newborn lung, we also asked if elastin haploinsufficiency would accentuate lung growth arrest seen after prolonged MV of neonatal mice.

View Article and Find Full Text PDF

Background: 18:1/18:1-Dioleoyl-phosphatidylgycerol (DOPG) is a surfactant phospholipid that is nearly non-detectable in neonatal surfactant films. When alveolar macrophages are exposed to DOPG in vitro, secretory phospholipase A2 (sPLA2) production is blocked, resulting in suppressed macrophage activity and improved surfactant function. We investigated whether the addition of DOPG to a commercially available surfactant preparation would improve lung function in a neonatal piglet model of acute respiratory distress syndrome.

View Article and Find Full Text PDF

Hypoxemic respiratory failure of the neonatal organism involves increased acid sphingomyelinase (aSMase) activity and production of ceramide, a second messenger of a pro-inflammatory pathway that promotes increased vascular permeability, surfactant alterations and alveolar epithelial apoptosis. We comparatively assessed the benefits of topical aSMase inhibition by either imipramine (Imi) or phosphatidylinositol-3,5-bisphosphate (PIP2) when administered into the airways together with surfactant (S) for fortification. In this translational study, a triple-hit acute lung injury model was used that entails repeated airway lavage, injurious ventilation and tracheal lipopolysaccharide instillation in newborn piglets subject to mechanical ventilation for 72 hrs.

View Article and Find Full Text PDF

D-myo-inositol-1,2,6-trisphosphate (IP3) is an isomer of the naturally occurring second messenger D-myo-inositol-1,4,5-trisphosphate, and exerts anti-inflammatory and antiedematous effects in the lung. Myo-inositol (Inos) is a component of IP3, and is thought to play an important role in the prevention of neonatal pulmonary diseases such as bronchopulmonary dysplasia and neonatal acute lung injury (nALI). Inflammatory lung diseases are characterized by augmented acid sphingomyelinase (aSMase) activity leading to ceramide production, a pathway that promotes increased vascular permeability, apoptosis, and surfactant alterations.

View Article and Find Full Text PDF