Plant Sci
July 2024
The cotton boll weevil (CBW, Anthonomus grandis) stands as one of the most significant threats to cotton crops (Gossypium hirsutum). Despite substantial efforts, the development of a commercially viable transgenic cotton event for effective open-field control of CBW has remained elusive. This study describes a detailed characterization of the insecticidal toxins Cry23Aa and Cry37Aa against CBW.
View Article and Find Full Text PDFLastly, the bZIP gene family encompasses genes that have been reported to play a role in flower development, such as bZIP14 (FD). Notably, bZIP14 is essential for Flowering Locus T (FT) initiation of floral development in Arabidopsis (Abe et al. 2005).
View Article and Find Full Text PDFThe pUceS8.3 is a constitutive gene promoter with potential for ectopic and strong genes overexpression or active biomolecules in plant tissues attacked by pests, including nematode-induced giant cells or galls. Soybean (Glycine max) is one of the most important agricultural commodities worldwide and a major protein and oil source.
View Article and Find Full Text PDFCharacterization of anther and ovule developmental programs and expression analyses of stage-specific floral marker genes in Gossypium hirsutum allowed to build a comprehensive portrait of cotton flower development before fiber initiation. Gossypium hirsutum is the most important cotton species that is cultivated worldwide. Although cotton reproductive development is important for fiber production, since fiber is formed on the epidermis of mature ovules, cotton floral development remains poorly understood.
View Article and Find Full Text PDFDrought-tolerant species, such as Setaria viridis, a C model plant, make physiological and biochemical adjustments water limitation and recover from the stress upon its release. We investigated S. viridis (A10.
View Article and Find Full Text PDFPlant Physiol Biochem
June 2018
The MADS-box gene family encodes transcription factors that share a highly conserved domain known to bind to DNA. Members of this family control various processes of development in plants, from root formation to fruit ripening. In this work, a survey of diploid (Gossypium raimondii and Gossypium arboreum) and tetraploid (Gossypium hirsutum) cotton genomes found a total of 147, 133 and 207 MADS-box genes, respectively, distributed in the MIKC, Mα, Mβ, Mγ, and Mδ subclades.
View Article and Find Full Text PDFExpression analysis of the AG -subfamily members from G. hirsutum during flower and fruit development. Reproductive development in cotton, including the fruit and fiber formation, is a complex process; it involves the coordinated action of gene expression regulators, and it is highly influenced by plant hormones.
View Article and Find Full Text PDF