Publications by authors named "Stefanie Korntner"

This study comprehensively validated the bleomycin (BLEO) induced mouse model of IPF for utility in preclinical drug discovery. To this end, the model was rigorously evaluated for reproducible phenotype and TGFβ-directed treatment outcomes. Lung disease was profiled longitudinally in male C57BL6/JRJ mice receiving a single intratracheal instillation of BLEO (n = 10-12 per group).

View Article and Find Full Text PDF

Tendons are unique dense connective tissues with discrete zones having specific structure and function. They are juxtaposed with other tissues (e.g.

View Article and Find Full Text PDF

Enthesis repair remains a challenging clinical indication. Herein, a three-layer scaffold composed of a tendon-like layer of collagen type I, a fibrocartilage-like layer of collagen type II and a bone-like layer of collagen type I and hydroxyapatite, was designed to recapitulate the matrix composition of the enthesis. To aid tenogenic and fibrochondrogenic differentiation, bioactive molecules were loaded in the tendon-like layer or the fibrocartilage-like layer and their effect was assessed in setting using human bone marrow derived mesenchymal stromal cells and in an model.

View Article and Find Full Text PDF

Cell culture media containing undefined animal-derived components and prolonged culture periods in the absence of native extracellular matrix result in phenotypic drift of human bone marrow stromal cells (hBMSCs). Herein, we assessed whether animal component-free (ACF) or xeno-free (XF) media formulations maintain hBMSC phenotypic characteristics more effectively than foetal bovine serum (FBS)-based media. In addition, we assessed whether tissue-specific extracellular matrix, induced macromolecular crowding (MMC) during expansion and/or differentiation, can more tightly control hBMSC fate.

View Article and Find Full Text PDF

The combined effect of surface topography and substrate rigidity in stem cell cultures is still under-investigated, especially when biodegradable polymers are used. Herein, we assessed human bone marrow stem cell response on aliphatic polyester substrates as a function of anisotropic grooved topography and rigidity (7 and 12 kPa). Planar tissue culture plastic (TCP, 3 GPa) and aliphatic polyester substrates were used as controls.

View Article and Find Full Text PDF

Craniofacial (CF) tendons are often affected by traumatic injuries and painful disorders that can severely compromise critical jaw functions, such as mastication and talking. Unfortunately, tendons lack the ability to regenerate, and there are no solutions to restore their native properties or function. An understanding of jaw tendon development could inform tendon regeneration strategies to restore jaw function, however CF tendon development has been relatively unexplored.

View Article and Find Full Text PDF

Scaffold-free in vitro organogenesis exploits the innate ability of cells to synthesise and deposit their own extracellular matrix to fabricate tissue-like assemblies. Unfortunately, cell-assembled tissue engineered concepts require prolonged ex vivo culture periods of very high cell numbers for the development of a borderline three-dimensional implantable device, which are associated with phenotypic drift and high manufacturing costs, thus, hindering their clinical translation and commercialisation. Herein, we report the accelerated (10 days) development of a truly three-dimensional (338.

View Article and Find Full Text PDF

In the medical device sector, bloom index and residual endotoxins should be controlled, as they are crucial regulators of the device's physicochemical and biological properties. It is also imperative to identify a suitable crosslinking method to increase mechanical integrity, without jeopardising cellular functions of gelatin-based devices. Herein, gelatin preparations with variable bloom index and endotoxin levels were used to fabricate non-crosslinked and polyethylene glycol succinimidyl glutarate crosslinked gelatin scaffolds, the physicochemical and biological properties of which were subsequently assessed.

View Article and Find Full Text PDF

The use of macromolecular crowding in the development of extracellular matrix-rich cell-assembled tissue equivalents is continuously gaining pace in regenerative engineering. Despite the significant advancements in the field, the optimal macromolecular crowder still remains elusive. Herein, the physicochemical properties of different concentrations of different molecular weights hyaluronic acid (HA) and their influence on equine adipose-derived stem cell cultures were assessed.

View Article and Find Full Text PDF

Development of mesenchymal stem cell-based tissue engineered implantable devices requires prolonged in vitro culture for the development of a three-dimensional implantable device, which leads to phenotypic drift, thus hindering the clinical translation and commercialisation of such approaches. Macromolecular crowding, a biophysical phenomenon based on the principles of excluded-volume effect, dramatically accelerates and increases extracellular matrix deposition during in vitro culture. However, the optimal macromolecular crowder is still elusive.

View Article and Find Full Text PDF

Tendinopathy is accompanied by a cascade of inflammatory events promoting tendon degeneration. Among various cytokines, interleukin-1β plays a central role in driving catabolic processes, ultimately resulting in the activation of matrix metalloproteinases and a diminished collagen synthesis, both of which promote tendon extracellular matrix degradation. Pulsed electromagnetic field (PEMF) therapy is often used for pain management, osteoarthritis, and delayed wound healing.

View Article and Find Full Text PDF

Background/aims: Effective wound-healing generally requires efficient re-vascularization after injury, ensuring sufficient supply with oxygen, nutrients, and various cell populations. While this applies to most tissues, tendons are mostly avascular in nature and harbor relatively few cells, probably contributing to their poor regenerative capacity. Considering the minimal vascularization of healthy tendons, we hypothesize that controlling angiogenesis in early tendon healing is beneficial for repair tissue quality and function.

View Article and Find Full Text PDF

Angiogenesis, the process of new blood vessel formation from existing blood vessels, is a key aspect of virtually every repair process. During wound healing an extensive, but immature and leaky vascular plexus forms which is subsequently reduced by regression of non-functional vessels. More recent studies indicate that uncontrolled vessel growth or impaired vessel regression as a consequence of an excessive inflammatory response can impair wound healing, resulting in scarring and dysfunction.

View Article and Find Full Text PDF

Chronic and acute tendinopathies are difficult to treat and tendon healing is generally a very slow and incomplete process and our general understanding of tendon biology and regeneration lags behind that of muscle or bone. Although still largely unexplored, several studies suggest a positive effect of nutritional interventions on tendon health and repair. With this study, we aim to reveal effects of a high-glucose diet on tendon neoformation in a non-diabetic rat model of Achilles tenotomy.

View Article and Find Full Text PDF

Despite significant advancements in bone tissue-engineering applications, the clinical impact of bone marrow stromal cells (BMSCs) for the treatment of large osseous defects remains limited. Therefore, other cell sources are under investigation for their osteogenic potential to repair bone. In this study, tendon-derived stromal cells (TDSCs) were evaluated in comparison to BMSCs to support the functional repair of a 5 mm critical-sized, segmental defect in the rat femur.

View Article and Find Full Text PDF

Tendons lack sufficient blood supply and represent a bradytroph tissue with prolonged healing time under pathological conditions. While the role of lymphatics in wound/defect healing in tissues with regular blood supply is well investigated, its involvement in tendon defects is not clear. We here try to identify the role of the lymphatic system in a tendon lesion model with morphological methods.

View Article and Find Full Text PDF

Tears of the anterior cruciate ligament (ACL) are very frequent injuries, particularly in young and active people. Arthroscopic reconstruction using tendon auto- or allograft represents the gold-standard for the management of ACL tears. Interestingly, the ACL has the potential to heal upon intensive non-surgical rehabilitation procedures.

View Article and Find Full Text PDF

Purpose: The origin of pericytes (PCs) has been controversially discussed and at least three different sources of PCs are proposed: a neural crest, mesodermal, or bone marrow origin. In the present study we investigated a potential neural crest origin of ocular PCs in a transgenic Rosa26-YFP-Sox10-Cre neural crest-specific reporter mouse model at different developmental stages.

Methods: The Rosa26-YFP-Sox10-Cre mouse model expresses the yellow fluorescent protein (YFP) reporter in cells with an active Sox10 promoter and was here used for cell fate studies of Sox10-positive neural crest derived progeny cells.

View Article and Find Full Text PDF