Acclimation and adaptation of metabolism to a changing environment are key processes for plant survival and reproductive success. In the present study, 241 natural accessions of Arabidopsis (Arabidopsis thaliana) were grown under two different temperature regimes, 16 °C and 6 °C, and growth parameters were recorded, together with metabolite profiles, to investigate the natural genome × environment effects on metabolome variation. The plasticity of metabolism, which was captured by metabolic distance measures, varied considerably between accessions.
View Article and Find Full Text PDFWe investigated early vegetative growth of natural accessions in cold, nonfreezing temperatures, similar to temperatures these plants naturally encounter in fall at northern latitudes. We found that accessions from northern latitudes produced larger seedlings than accessions from southern latitudes, partly as a result of larger seed size. However, their subsequent vegetative growth when exposed to colder temperatures was slower.
View Article and Find Full Text PDFSomatic cells acclimate to changes in the environment by temporary reprogramming. Much has been learned about transcription factors that induce these cell-state switches in both plants and animals, but how cells rapidly modulate their proteome remains elusive. Here, we show rapid induction of autophagy during temporary reprogramming in plants triggered by phytohormones, immune, and danger signals.
View Article and Find Full Text PDFThere is a need for flexible and affordable plant phenotyping solutions for basic research and plant breeding. We demonstrate our open source plant imaging and processing solution ('PhenoBox'/'PhenoPipe') and provide construction plans, source code and documentation to rebuild the system. Use of the PhenoBox is exemplified by studying infection of the model grass Brachypodium distachyon by the head smut fungus Ustilago bromivora, comparing phenotypic responses of maize to infection with a solopathogenic Ustilago maydis (corn smut) strain and effector deletion strains, and studying salt stress response in Nicotiana benthamiana.
View Article and Find Full Text PDF