Single-molecule switching nanoscopy overcomes the diffraction limit of light by stochastically switching single fluorescent molecules on and off, and then localizing their positions individually. Recent advances in this technique have greatly accelerated the data acquisition speed and improved the temporal resolution of super-resolution imaging. However, it has not been quantified whether this speed increase comes at the cost of compromised image quality.
View Article and Find Full Text PDFThe concept and realization of microfluidic total analysis systems (microTAS) have revolutionized the analytical process by integrating the whole breadth of analytical techniques into miniaturized systems. Paramount for efficient and competitive microTAS are integrated detection strategies, which lead to low limits of detection while reducing the sample volume. The concept of electrochemiluminescence (ECL) has been intriguing ever since its introduction based on Ru(bpy)3 (2+) by Tokel and Bard [1] (J Am Chem Soc 1853:2862-2863, 1972), especially because of its immense sensitivity, nonexistent auto-luminescent background signal, and simplicity in experimental design.
View Article and Find Full Text PDF