Objectives: To evaluate the remediation efficiency of Mucor hiemalis by comparing media elimination, uptake, and biotransformation of microcystin-LR with exposure to pure toxin versus a crude bloom extract.
Results: With exposure to the extract, the elimination rate of microcystin-LR from the media, which was 0.28 ng MC-LR l h, was significantly higher compared to that achieved with exposure to the pure toxin (0.
Many organisms harbor circadian clocks with periods close to 24 h. These cellular clocks allow organisms to anticipate the environmental cycles of day and night by synchronizing circadian rhythms with the rising and setting of the sun. These rhythms originate from the oscillator components of circadian clocks and control global gene expression and various cellular processes.
View Article and Find Full Text PDFThe coordination of biological activities into daily cycles provides an important advantage for the fitness of diverse organisms. Most eukaryotes possess an internal clock ticking with a periodicity of about one day to anticipate sunrise and sunset. The 24-hour period of the free-running rhythm is highly robust against many changes in the natural environment.
View Article and Find Full Text PDFThe chloroplast genome of land plants contains only a single gene for a splicing factor, Maturase K (MatK). To better understand the regulation of matK gene expression, we quantitatively investigated the expression of matK across tobacco (Nicotiana tabacum) development at the transcriptional, posttranscriptional, and protein levels. We observed striking discrepancies of MatK protein and matK messenger RNA levels in young tissue, suggestive of translational regulation or altered protein stability.
View Article and Find Full Text PDFMolecular genetic studies in the circadian model organism Synechococcus have revealed that the KaiC protein, the central component of the circadian clock in cyanobacteria, is involved in activation and repression of its own gene transcription. During 24 hours, KaiC hexamers run through different phospho-states during daytime. So far, it has remained unclear which phospho-state of KaiC promotes kaiBC expression and which opposes transcriptional activation.
View Article and Find Full Text PDFThe circadian rhythm of the cyanobacterium Synechococcus elongatus is controlled by three proteins, KaiA, KaiB, and KaiC. In a test tube, these proteins form complexes of various stoichiometry and the average phosphorylation level of KaiC exhibits robust circadian oscillations in the presence of ATP. Using mathematical modeling, we were able to reproduce quantitatively the experimentally observed phosphorylation dynamics of the KaiABC clockwork in vitro.
View Article and Find Full Text PDF