Publications by authors named "Stefanie Hemmer"

Naturally occurring and engineered flavin-binding, blue-light-sensing, light, oxygen, voltage (LOV) photoreceptor domains have been used widely to design fluorescent reporters, optogenetic tools, and photosensitizers for the visualization and control of biological processes. In addition, natural LOV photoreceptors with engineered properties were recently employed for optimizing plant biomass production in the framework of a plant-based bioeconomy. Here, the understanding and fine-tuning of LOV photoreceptor (kinetic) properties is instrumental for application.

View Article and Find Full Text PDF

Light, oxygen, voltage (LOV) photoreceptors are widely distributed throughout all kingdoms of life, and have in recent years, due to their modular nature, been broadly used as sensor domains for the construction of optogenetic tools. For understanding photoreceptor function as well as for optogenetic tool design and fine-tuning, a detailed knowledge of the photophysics, photochemistry, and structural changes underlying the LOV signaling paradigm is instrumental. Mutations that alter the lifetime of the photo-adduct signaling state represent a convenient handle to tune LOV sensor on/off kinetics and, thus, steady-state on/off equilibria of the photoreceptor (or optogenetic switch).

View Article and Find Full Text PDF

Photoactive biological systems modify the optical properties of their chromophores, known as spectral tuning. Determining the molecular origin of spectral tuning is instrumental for understanding the function and developing applications of these biomolecules. Spectral tuning in flavin-binding fluorescent proteins (FbFPs), an emerging class of fluorescent reporters, is limited by their dependency on protein-bound flavins, whose structure and hence electronic properties cannot be altered by mutation.

View Article and Find Full Text PDF