Publications by authors named "Stefanie Hackl"

Prion diseases are a group of neurodegenerative disorders that infect animals and humans with proteinaceous particles called prions. Prions consist of scrapie prion protein (PrP), a misfolded version of the cellular prion protein (PrP). During disease progression, PrP replicates by interacting with PrP and inducing its conversion to PrP.

View Article and Find Full Text PDF

Deciphering the pathophysiologic events in prion diseases is challenging, and the role of posttranslational modifications (PTMs) such as glypidation and glycosylation remains elusive due to the lack of homogeneous protein preparations. So far, experimental studies have been limited in directly analyzing the earliest events of the conformational change of cellular prion protein (PrP ) into scrapie prion protein (PrP ) that further propagates PrP misfolding and aggregation at the cellular membrane, the initial site of prion infection, and PrP misfolding, by a lack of suitably modified PrP variants. PTMs of PrP, especially attachment of the glycosylphosphatidylinositol (GPI) anchor, have been shown to be crucially involved in the PrP formation.

View Article and Find Full Text PDF

Semisynthesis of proteins via expressed protein ligation is a widely applicable method, even more so because of the possibility of ligation at non-cysteine sites using β-mercapto amino acids that can be converted to the corresponding native amino acids by desulfurization. A drawback of this ligation- desulfurization approach is the removal of any unprotected native cysteine residues within the ligated protein segments. Here, we show that the phenacyl (PAc) moiety can be successfully used to protect cysteines within recombinantly generated protein segments.

View Article and Find Full Text PDF

The prion protein (PrP) is an -glycosylated protein attached to the outer leaflet of eukaryotic cell membranes a glycosylphosphatidylinositol (GPI) anchor. Different prion strains have distinct glycosylation patterns and the extent of glycosylation of potentially pathogenic misfolded prion protein (PrP) has a major impact on several prion-related diseases (transmissible spongiform encephalopathies, TSEs). Based on these findings it is hypothesized that posttranslational modifications (PTMs) of PrP influence conversion of cellular prion protein (PrP) into PrP and, as such, modified PrP variants are critical tools needed to investigate the impact of PTMs on the pathogenesis of TSEs.

View Article and Find Full Text PDF

The site-selective installation of lipid modifications on proteins is critically important in our understanding of how membrane association influences the biophysical properties of proteins as well as to study certain proteins in their native environment. Here, we describe the use of split inteins for the C-terminal attachment of lipid-modified peptides to virtually any protein of interest (POI) via protein trans-splicing (PTS). To achieve this, the protein of interest is expressed in fusion with the N-terminal split intein segment and the C-terminal split intein segment is prepared by solid phase peptide synthesis.

View Article and Find Full Text PDF

Nucleocidin is one of the very few natural products known to contain fluorine. Mysteriously, the nucleocidin producer Streptomyces calvus ATCC 13382 has not been observed to synthesize the compound since its discovery in 1956. Here, we report that complementation of S.

View Article and Find Full Text PDF

Streptomyces species are well known for their particular features of morphological differentiation. On solid agar, a mold-like aerial mycelium is formed and spores are produced, in which the bld genes play a crucial role. In S.

View Article and Find Full Text PDF

Six novel ruthenium(II)- and osmium(II)-arene complexes with indoloquinoline modified ligands containing methyl and halo substituents in position 8 of the molecule backbone have been synthesised and comprehensively characterised by spectroscopic methods (H, C NMR, UV-Vis), ESI mass spectrometry and X-ray crystallography. Binding of indoloquinolines to a metal-arene scaffold makes the products soluble enough in biological media to allow for assaying their antiproliferative activity. The complexes were tested in three human cancer cell lines, namely A549 (non-small cell lung cancer), SW480 (colon carcinoma) and CH1 (ovarian carcinoma), yielding IC values in the 10-10 M concentration range after continuous exposure for 96 h.

View Article and Find Full Text PDF