A series of tetracationic bis-triarylborane dyes, differing in the aromatic linker connecting two dicationic triarylborane moieties, showed very high submicromolar affinities toward ds-DNA and ds-RNA. The linker strongly influenced the emissive properties of triarylborane cations and controlled the fluorimetric response of dyes. The fluorene-analog shows the most selective fluorescence response between AT-DNA, GC-DNA, and AU-RNA, the pyrene-analog's emission is non-selectively enhanced by all DNA/RNA, and the dithienyl-diketopyrrolopyrrole analog's emission is strongly quenched upon DNA/RNA binding.
View Article and Find Full Text PDFChemistry
October 2021
The synthesis, photophysical, and electrochemical properties of selectively mono-, bis- and tris-dimethylamino- and trimethylammonium-substituted bis-triarylborane bithiophene chromophores are presented along with the water solubility and singlet oxygen sensitizing efficiency of the cationic compounds Cat , Cat , Cat(i) , and Cat . Comparison with the mono-triarylboranes reveals the large influence of the bridging unit on the properties of the bis-triarylboranes, especially those of the cationic compounds. Based on these preliminary investigations, the interactions of Cat , Cat , Cat(i) , and Cat with DNA, RNA, and DNApore were investigated in buffered solutions.
View Article and Find Full Text PDFWe report four new luminescent tetracationic bis-triarylborane DNA and RNA sensors that show high binding affinities, in several cases even in the nanomolar range. Three of the compounds contain substituted, highly emissive and structurally flexible bis(2,6-dimethylphenyl-4-ethynyl)arene linkers (3: arene=5,5'-2,2'-bithiophene; 4: arene=1,4-benzene; 5: arene=9,10-anthracene) between the two boryl moieties and serve as efficient dual Raman and fluorescence chromophores. The shorter analogue 6 employs 9,10-anthracene as the linker and demonstrates the importance of an adequate linker length with a certain level of flexibility by exhibiting generally lower binding affinities than 3-5.
View Article and Find Full Text PDFInvited for the cover of this issue are the groups of Todd B. Marder at the Julius-Maximilians-Universität Würzburg and Ivo Piantanida at the Ruder Boškovic Institute. The image depicts the molecular structure of a bis-triarylborane-based chromophore that is simultaneously detecting ds-DNA and proteins.
View Article and Find Full Text PDFA water-soluble tetracationic quadrupolar bis-triarylborane chromophore showed strong binding to ds-DNA, ds-RNA, ss-RNA, as well as to the naturally most abundant protein, BSA. The novel dye can distinguish between DNA/RNA and BSA by fluorescence emission separated by Δ =3600 cm , allowing for the simultaneous quantification of DNA/RNA and protein (BSA) in a mixture. The applicability of such fluorimetric differentiation in vitro was demonstrated, strongly supporting a protein-like target as a dominant binding site of 1 in cells.
View Article and Find Full Text PDFTwo different chromophores, namely a dipolar and an octupolar system, were prepared and their linear and nonlinear optical properties as well as their bioimaging capabilities were compared. Both contain triphenylamine as the donor and a triarylborane as the acceptor, the latter modified with cationic trimethylammonio groups to provide solubility in aqueous media. The octupolar system exhibits a much higher two-photon brightness, and also better cell viability and enhanced selectivity for lysosomes compared with the dipolar chromophore.
View Article and Find Full Text PDFA series of tetracationic quadrupolar chromophores containing three-coordinate boron π-acceptors linked by different π-bridges, namely 4,4'-biphenyl, 2,7-pyrene, 2,7-fluorene, 3,6-carbazole and 5,5'-di(thien-2-yl)-3,6-diketopyrrolopyrrole, were synthesized. While their neutral precursors displayed highly solvatochromic fluorescence, the water-soluble tetracationic target molecules , did not, but their emission colour could be tuned from blue to pink by changing the π-bridge. Compound , containing the diketopyrrolopyrrole bridge, exhibits the most red-shifted absorption and emission maxima and the largest two-photon absorption cross-section (4560 GM at 740 nm in MeCN).
View Article and Find Full Text PDFThe stability of tetracationic triarylboranes in dilute aqueous solution was investigated by tuning the steric demand of the linker in a (para-(N,N,N-trimethylammonio)xylyl) B-(linker)-B(para-(N,N,N-trimethylammonio)xylyl) structure. With increasing steric bulk of the linker, namely 1,4-phenylene, 2,2'''-(3,3'''-dimethyl)-5,2':5',2'':5'',5'''-quaterthiophene, 9,10-anthracenylene, and 4,4'''-(5'-(3,5-dimethylphenyl))(5''-(3''',5'''-dimethylphenyl))-2',2''-bithiophene, the stability of the compounds increased. The anthracene-based chromophore, compound 3M is water-stable for at least 48 h, is nontoxic to cells and exhibits an exceedingly high fluorescence quantum yield of 0.
View Article and Find Full Text PDFHerein, two new quadrupolar acceptor-π-donor-π-acceptor (A-π-D-π-A) chromophores have been prepared featuring a strongly electron-donating diborene core and strongly electron-accepting dimesitylboryl (BMes ) and bis(2,4,6-tris(trifluoromethyl)phenyl)boryl (B Mes ) end groups. Analysis of the compounds by NMR spectroscopy, X-ray crystallography, cyclic voltammetry, and UV/Vis-NIR absorption and emission spectroscopy indicated that the compounds have extended conjugated π-systems spanning their B C cores. The combination of exceptionally potent π-donor (diborene) and π-acceptor (diarylboryl) groups, both based on trigonal boron, leads to very small HOMO-LUMO gaps, resulting in strong absorption in the near-IR region with maxima in THF at 840 and 1092 nm and very high extinction coefficients of ca.
View Article and Find Full Text PDFThe empty p -orbital of a three-coordinate organoboron compound leads to its electron-deficient properties, which make it an excellent π-acceptor in conjugated organic chromophores. The empty p-orbital in such Lewis acids can be attacked by nucleophiles, so bulky groups are often employed to provide air-stable materials. However, many of these can still bind fluoride and cyanide anions leading to applications as anion-selective sensors.
View Article and Find Full Text PDFThree water-soluble tetracationic quadrupolar chromophores comprising two three-coordinate boron π-acceptor groups bridged by thiophene-containing moieties were synthesised for biological imaging applications. Compound 3 containing the bulkier 5-(3,5-Me2 C6 H2 )-2,2'-(C4 H2 S)2 -5'-(3,5-Me2 C6 H2 ) bridge is stable over a long period of time, exhibits a high fluorescence quantum yield and strong one- and two-photon absorption (TPA), and has a TPA cross section of 268 GM at 800 nm in water. Confocal laser scanning fluorescence microscopy studies in live cells indicated localisation of the chromophore at the mitochondria; moreover, cytotoxicity measurements proved biocompatibility.
View Article and Find Full Text PDFA star-like compound consisting of a polychlorinated triphenylmethyl radical (PCTM) core linked to three triarylamines (TAA) and a symmetric and an asymmetric hexaarylbenzene (HAB) both substituted with three PCTMs and three TAAs were synthesised. In the star-like compound a strong communication between the redox centres was observed by electron paramagnetic resonance spectroscopy and UV/Vis/NIR absorption measurements, whereas in the HABs only a weak interaction could be detected. The temporal evolution of the excited states was monitored by ultrafast transient absorption measurements.
View Article and Find Full Text PDF