Publications by authors named "Stefanie Goerges"

Comprehensive collaborative studies from our laboratories reveal the extensive biodiversity of the microflora of the surfaces of smear-ripened cheeses. Two thousand five hundred ninety-seven strains of bacteria and 2,446 strains of yeasts from the surface of the smear-ripened cheeses Limburger, Reblochon, Livarot, Tilsit, and Gubbeen, isolated at three or four times during ripening, were identified; 55 species of bacteria and 30 species of yeast were found. The microfloras of the five cheeses showed many similarities but also many differences and interbatch variation.

View Article and Find Full Text PDF
Article Synopsis
  • A study analyzed the microflora of Livarot cheeses from three dairies during ripening, focusing on identifying yeast and bacteria species present.
  • The predominant yeast was Geotrichum candidum, while the bacterial population mainly consisted of Gram-positive strains, particularly from the genera Arthrobacter, Brevibacterium, and Staphylococcus, along with a significant presence of Gram-negative bacteria like Alcaligenes and Pseudomonas.
  • Despite the use of both pasteurized and unpasteurized milk, the biodiversity remained consistent across the dairies, suggesting that some Gram-negative bacteria may have beneficial roles in cheese production that should be further explored.
View Article and Find Full Text PDF

Production of smear-ripened cheese critically depends on the surface growth of multispecies microbial consortia comprising bacteria and yeasts. These microorganisms often originate from the cheese-making facility and, over many years, have developed into rather stable, dairy-specific associations. While commercial smear starters are frequently used, it is unclear to what degree these are able to establish successfully within the resident microbial consortia.

View Article and Find Full Text PDF

The diversity and dynamics of yeast populations in four batches of Livarot cheese at three points of ripening were determined. Nine different species were identified by Fourier transform infrared spectroscopy and/or sequencing, and each batch had its own unique yeast community. A real-time PCR method was developed to quantify the four main yeast species: Debaryomyces hansenii, Geotrichum candidum, Kluyveromyces sp.

View Article and Find Full Text PDF

Many bacteria are known to inhibit food pathogens, such as Listeria monocytogenes, by secreting a variety of bactericidal and bacteriostatic substances. In sharp contrast, it is unknown whether yeast has an inhibitory potential for the growth of pathogenic bacteria in food. A total of 404 yeasts were screened for inhibitory activity against five Listeria monocytogenes strains.

View Article and Find Full Text PDF

The microbial composition of smear-ripened cheeses is not very clear. A total of 194 bacterial isolates and 187 yeast isolates from the surfaces of four Irish farmhouse smear-ripened cheeses were identified at the midpoint of ripening using pulsed-field gel electrophoresis (PFGE), repetitive sequence-based PCR, and 16S rRNA gene sequencing for identifying and typing the bacteria and Fourier transform infrared spectroscopy and mitochondrial DNA restriction fragment length polymorphism (mtDNA RFLP) analysis for identifying and typing the yeast. The yeast microflora was very uniform, and Debaryomyces hansenii was the dominant species in the four cheeses.

View Article and Find Full Text PDF