Am J Physiol Lung Cell Mol Physiol
October 2022
The enzyme, nitric oxide-sensitive guanylyl cyclase (NO-GC), is activated by binding NO to its prosthetic heme group and catalyzes the formation of cGMP. The NO-GC is primarily known to mediate vascular smooth muscle relaxation in the lung, and inhaled NO has been successfully used as a selective pulmonary vasodilator. In comparison, NO-GC's impact on the regulation of airway tone is less acknowledged and, most importantly, little is known about the issue that NO-GC signaling is accomplished by two isoforms: NO-GC1 and NO-GC2, implying the existence of distinct "cGMP pools.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF) is a disease characterized by extensive fibrosis of the lung tissue. Wnt5a expression was observed to be upregulated in IPF and suggested to be involved in the progression of the disease. Interestingly, smooth muscle cells (SMC) are a major source of Wnt5a in IPF patients.
View Article and Find Full Text PDFClin Exp Allergy
November 2021
Allergic airway inflammation is accompanied by excessive generation of nitric oxide (NO). Beside its detrimental activity due to the generation of reactive nitrogen species, NO was found to modulate immune responses by activating the NO-sensitive Guanylyl Cyclases (NO-GCs) thereby mediating the formation of the second messenger cyclic GMP (cGMP). To investigate the contribution of the key-enzyme NO-GC on the development of Th2 immunity in vivo, we sensitized knock-out (KO) mice of the major isoform NO-GC1 to the model allergen ovalbumin (OVA).
View Article and Find Full Text PDF