The potential risk of chemicals to the human eye is assessed by adopted test guidelines (TGs) for regulatory purposes to ensure consumer safety. Over the past decade, the Organization for Economic Co-operation and Development (OECD) has approved new approach methodologies (NAMs) to predict chemical eye damage. However, existing NAMs remain associated with limitations: First, no full replacement of the in vivo Draize eye test due to limited predictability of severe/mild damage was reached.
View Article and Find Full Text PDFThe pathophysiological role of Aβ oligomers in the onset of Alzheimer's disease (AD) is heavily disputed, pivoting research toward investigating mixed oligomers composed of Aβ and Aβ, which is more abundant but less aggregation-prone. This study investigates Aβ:Aβ oligomers in different ratios, examining their adverse effects on endothelial cells, neurons, astroglia, and microglia, as well as in a human blood-brain barrier (BBB) model. Combining label-free Raman microscopy with complementary imaging techniques and biochemical assays, we show the prominent impact of Aβ on Aβ fibrillation, suggesting an inhibitory effect on aggregation.
View Article and Find Full Text PDFInflammation plays a critical role in the pathophysiology of many diseases, and dysregulation of the involved signaling cascades often culminates in uncontrollable disease progression and, ultimately, chronic manifestation. Addressing these disorders requires balancing inflammation control while preserving essential immune functions. Cyclodextrins (CDs), particularly β-CD, have gained attention as biocompatible biomaterials with intrinsic anti-inflammatory properties, and chemical modification of their backbone offers a promising strategy to enhance their physicochemical properties, adaptability, and therapeutic potential.
View Article and Find Full Text PDFThe therapeutic effects of orally administered nanocarriers depend on their ability to effectively permeate the intestinal mucosa, which is one of the major challenges in oral drug delivery. Microfold cells are specialized enterocytes in the intestinal epithelium known for their high transcytosis abilities. This study aimed to compare and evaluate two targeting approaches using surface modifications of polymer-based nanocarriers, whereas one generally addresses enterocytes, and one is directed explicitly to microfold cells via targeting the sialyl Lewis motif on their surface.
View Article and Find Full Text PDFK1 represents a heterodimeric A/B toxin secreted by virus-infected strains. In a two-staged receptor-mediated process, the ionophoric activity of K1 leads to an uncontrolled influx of protons, culminating in the breakdown of the cellular transmembrane potential of sensitive cells. K1 killer yeast necessitate not only an immunity mechanism saving the toxin-producing cell from its own toxin but, additionally, a molecular system inactivating the toxic α subunit within the secretory pathway.
View Article and Find Full Text PDFThe killer phenomenon in yeast () not only provides the opportunity to study host-virus interactions in a eukaryotic model but also represents a powerful tool to analyze potential coadaptional events and the role of killer yeast in biological diversity. Although undoubtedly having a crucial impact on the abundance and expression of the killer phenotype in killer-yeast harboring communities, the influence of a particular toxin on its producing host cell has not been addressed sufficiently. In this study, we describe a model system of two K1 killer yeast strains with distinct phenotypical differences pointing to substantial selection pressure in response to the toxin secretion level.
View Article and Find Full Text PDFThe killer toxin K1 is a virally encoded fungal A/B toxin acting by disrupting plasma membrane integrity. The connection of α and β constitutes a critical feature for toxin biology and for decades the formation of three disulphide bonds linking the major toxin subunits was accepted as status quo. Due to the absence of experimental evidence, the involvement of each cysteine in heterodimer formation, K1 lethality and immunity was systematically analysed.
View Article and Find Full Text PDFThe K1 A/B toxin secreted by virus-infected strains kills sensitive cells via disturbance of cytoplasmic membrane functions. Despite decades of research, the mechanisms underlying K1 toxicity and immunity have not been elucidated yet. In a novel approach, this study aimed to characterize transcriptome changes in K1-treated sensitive yeast cells in a time-dependent manner.
View Article and Find Full Text PDFKiller toxin K1 is a heterodimeric protein toxin secreted by strains infected with the M1 double-stranded RNA 'killer' virus. After binding to a primary receptor at the level of the cell wall, K1 interacts with its secondary plasma membrane receptor Kre1p, eventually leading to an ionophoric disruption of membrane function. Although it has been under investigation for decades, neither the particular mechanisms leading to toxicity nor those leading to immunity have been elucidated.
View Article and Find Full Text PDF