Publications by authors named "Stefanie Besser"

Inhibitory neurons crucially contribute to shaping the breathing rhythm in the brain stem. These neurons use GABA or glycine as neurotransmitter; or co-release GABA and glycine. However, the developmental relationship between GABAergic, glycinergic and cotransmitting neurons, and the functional relevance of cotransmitting neurons has remained enigmatic.

View Article and Find Full Text PDF

GABAergic inhibitory neurons are a large population of neurons in the central nervous system (CNS) of mammals and crucially contribute to the function of the circuitry of the brain. To identify specific cell types and investigate their functions labelling of cell populations by transgenic expression of fluorescent proteins is a powerful approach. While a number of mouse lines expressing the green fluorescent protein (GFP) in different subpopulations of GABAergic cells are available, GFP expressing mouse lines are not suitable for either crossbreeding to other mouse lines expressing GFP in other cell types or for Ca2+-imaging using the superior green Ca2+-indicator dyes.

View Article and Find Full Text PDF

Both glycinergic and GABAergic neurons require the vesicular inhibitory amino acid transporter (VIAAT) for synaptic vesicle filling. Presynaptic GABA concentrations are determined by the GABA-synthesizing enzymes glutamate decarboxylase (GAD)65 and GAD67, whereas the presynaptic glycine content depends on the plasma membrane glycine transporter 2 (GlyT2). Although severely impaired, glycinergic transmission is not completely absent in GlyT2-knockout mice, suggesting that other routes of glycine uptake or de novo synthesis of glycine exist in presynaptic terminals.

View Article and Find Full Text PDF

Quality control and degradation of misfolded proteins are essential processes of all cells. The endoplasmic reticulum (ER) is the entry site of proteins into the secretory pathway in which protein folding occurs and terminally misfolded proteins are recognized and retrotranslocated across the ER membrane into the cytosol. Here, proteins undergo polyubiquitination by one of the membrane-embedded ubiquitin ligases, in yeast Hrd1/Der3 (HMG-CoA reductase degradation/degradation of the ER) and Doa10 (degradation of alpha), and are degraded by the proteasome.

View Article and Find Full Text PDF

Astrocytes operate in close spatial relationship to other cells including neurons. Structural interaction is controlled by a dynamic interplay between actin-based cell motility and contact formation via cell-cell and cell-extracellular matrix adhesions. A central player in the control of cell adhesion is the cytoskeletal adaptor protein Vinculin.

View Article and Find Full Text PDF

Inhibitory neurons are involved in the generation and patterning of the respiratory rhythm in the adult animal. However, the role of glycinergic neurons in the respiratory rhythm in the developing network is still not understood. Although the complete loss of glycinergic transmission in vivo is lethal, the blockade of glycinergic transmission in slices of the medulla has little effect on pre-Bötzinger complex network activity.

View Article and Find Full Text PDF

Astrocytes are important glial cells in the brain providing metabolic support to neurons as well as contributing to brain signaling. These different functional levels have to be highly coordinated to allow for proper cell and brain function. In this study, we show that in astrocytes the NAD(+) /NADH redox state modulates dopamine-induced Ca(2+) signals thereby connecting metabolism and Ca(2+) signaling.

View Article and Find Full Text PDF

The Grueneberg ganglion (GG) is a cluster of neurones present in the vestibule of the anterior nasal cavity. Although its function is still elusive, recent studies have shown that cells of the GG transcribe the gene encoding the olfactory marker protein (OMP) and project their axons to glomeruli of the olfactory bulb, suggesting that they may have a chemosensory function. Chemosensory responsiveness of olfactory neurones in the main olfactory epithelium (MOE) and the vomeronasal organ (VNO) is based on the expression of either odorant receptors or vomeronasal putative pheromone receptors.

View Article and Find Full Text PDF

The olfactory marker protein (OMP) is expressed in mature chemosensory neurons in the nasal neuroepithelium. Here, we report the identification of a novel population of OMP-expressing neurons located bilaterally in the anterior/dorsal region of each nasal cavity at the septum. These cells are clearly separated from the regio olfactoria, harboring the olfactory sensory neurons.

View Article and Find Full Text PDF