Publications by authors named "Stefanie Arnold"

Nanoporous carbon materials with customized structural features enable sustainable and electrochemical applications through improved performance and efficiency. Carbon spherogels (highly porous carbon aerogel materials consisting of an assembly of hollow carbon nanosphere units with uniform diameters) are desirable candidates as they combine exceptional electrical conductivity, bespoke shell porosity, tunability of the shell thickness, and a high surface area. Herein, we introduce a novel and more environmentally friendly sol-gel synthesis of resorcinol-formaldehyde (RF) templated by polystyrene spheres, forming carbon spherogels in an organic solvent.

View Article and Find Full Text PDF

This study presents a novel approach to developing high-performance lithium-ion battery electrodes by loading titania-carbon hybrid spherogels with sulfur. The resulting hybrid materials combine high charge storage capacity, electrical conductivity, and core-shell morphology, enabling the development of next-generation battery electrodes. We obtained homogeneous carbon spheres caging crystalline titania particles and sulfur using a template-assisted sol-gel route and carefully treated the titania-loaded carbon spherogels with hydrogen sulfide.

View Article and Find Full Text PDF

Inorganic-organic hybrid materials with redox-active components were prepared by an aqueous precipitation reaction of ammonium heptamolybdate (AHM) with para-phenylenediamine (PPD). A scalable and low-energy continuous wet chemical synthesis process, known as the microjet process, was used to prepare particles with large surface area in the submicrometer range with high purity and reproducibility on a large scale. Two different crystalline hybrid products were formed depending on the ratio of molybdate to organic ligand and pH.

View Article and Find Full Text PDF

Seawater batteries are unique energy storage systems for sustainable renewable energy storage by directly utilizing seawater as a source for converting electrical energy and chemical energy. This technology is a sustainable and cost-effective alternative to lithium-ion batteries, benefitting from seawater-abundant sodium as the charge-transfer ions. Research has significantly improved and revised the performance of this type of battery over the last few years.

View Article and Find Full Text PDF
Article Synopsis
  • Faradaic electrode materials have advanced membrane capacitive deionization, enabling efficient freshwater production from seawater, but they suffer from slow desalination rates and stability issues due to volume changes during ion intercalation.
  • Researchers created a hollow cuboid cobalt hydroxide material that enhances desalination speed and stability, achieving a rapid desalination rate and 90% capacity retention after 100 cycles.
  • The hollow structure promotes efficient ion transport and reduces stress from volume changes, while also maximizing desalination capacity, suggesting a promising new approach to improve Faradaic materials for deionization.
View Article and Find Full Text PDF

Extraordinarily homogeneous, freestanding titania-loaded carbon spherogels can be obtained using Ti(acac)(OiPr) in the polystyrene sphere templated resorcinol-formaldehyde gelation. Thereby, a distinct, crystalline titania layer is achieved inside every hollow sphere building unit. These hybrid carbon spherogels allow capitalizing on carbon's electrical conductivity and the lithium-ion intercalation capacity of titania.

View Article and Find Full Text PDF

In many cases in industrial biotechnology, substrate costs make up a major part of the overall production costs. One strategy to achieve more cost-efficient processes in general is to exploit cheaper sources of substrate. Small organic acids derived from fast pyrolysis of lignocellulosic biomass represent a significant proportion of microbially accessible carbon in bio-oil.

View Article and Find Full Text PDF

Sodium-ion batteries (NIBs) are promising energy-storage devices with advantages such as low cost and highly abundant raw materials. To probe the electrochemical properties of NIBs, sodium metal is most frequently applied as the reference and/or counter electrode in state-of-the-art literature. However, the high reactivity of the sodium metal and its impact on the electrochemical performance is usually neglected.

View Article and Find Full Text PDF

Lignocellulosic biomass is an important feedstock for a potential future bio-based economy. Owing to its compact structure, suitable decomposition technologies will be necessary to make it accessible for biotechnological conversion. While chemical and enzymatic hydrolysis are currently established methods, a promising alternative is provided by fast pyrolysis.

View Article and Find Full Text PDF

Background: Treatment options for pancreatic ductal adenocarcinoma (PDAC) are limited. Histone deacetylase inhibitors are a new and promising drug family with strong anticancer activity. The aim of this study was to examine the efficacy of in vitro and in vivo treatment with the novel pan-HDAC inhibitor belinostat on the growth of human PDAC cells.

View Article and Find Full Text PDF