Publications by authors named "Stefania Santangeli"

Bisphenol A (BPA), a monomer used for polycarbonate manufacture, has been widely reported as an endocrine-disrupting chemical (EDC). Among other alterations, BPA induces reproductive dysfunctionalities. Changes in the endocannabinoid system (ECS) have been recently shown to be associated with reproductive disorders.

View Article and Find Full Text PDF

Bisphenol A (BPA) is an abundant environmental contaminant and studies have shown the presence of BPA in the urine of over 90% of population tested in Canada and USA. In addition to its reported harmful effects, there is concern for its transgenerational effects. For a compound to induce transgenerational effect, an epigenetic mark should be mitotically and meiotically stable without reprogramming in primordial germ cells and post fertilization embryos.

View Article and Find Full Text PDF

Exposure to extremely low frequency magnetic fields (ELF-MFs) has been associated with an increased risk of neurodegenerative disorders. The underlying mechanisms, however, are still debated. Since epigenetics play a key role in the neurodegenerative process, we investigated whether exposure to ELF-MF (50 Hz, 1 mT) might affect global DNA methylation of SH-SY5Y dopaminergic-like neuroblastoma cells.

View Article and Find Full Text PDF

Over the past 25 years, extensive research in vertebrate species has identified several genomic pathways altered by exposures to anthropogenic chemicals with hormone-like activity mediated by their interaction with nuclear receptors. In addition, many pollutants have been shown to interfere with non-genomic (non-classical) pathways, but this mechanism of endocrine disruption is still poorly understood. Recently, the number of publications describing the effects of Endocrine disrupting chemicals (EDCs) on fish reproduction, focusing on the deregulation of the hypothalamus-pituitary-gonadal axis as well as on gamete quality, significantly increased.

View Article and Find Full Text PDF

DiNP (Di-isononyl phthalate) has been recently introduced as DEHP (Bis (2-ethylhexyl) phthalate) substitute and due to its chemical properties, DiNP is commonly used in a large variety of plastic items. The endocannabinoid system (ECS) is a lipid signaling system involved in a plethora of physiological pathways including the control of the reproductive and metabolic processes. In this study, the effects of DiNP on the ECS of zebrafish (male and female) gonads were analyzed.

View Article and Find Full Text PDF

Endocrine disrupting chemicals (EDCs) are known to disrupt normal metabolism and can influence the incidence of obesity in animals and humans. EDCs can exert adverse effects at low concentrations, often in a non-monotonic dose-related fashion. Among EDCs, Bisphenol A (BPA) is extensively used in the production of polycarbonate plastic, and is among the most abundant contaminants in the world.

View Article and Find Full Text PDF

Bisphenol A (BPA), a widely used chemical to produce polycarbonate plastics, has become an ubiquitous pollutant due to its extensive use. Its endocrine disrupting properties have been documented in several studies, as well as its potential to induce metabolic and reproductive impairments at environmentally relevant concentrations. Recent insights highlighted the role of the Endocannabinoid System (ECS) in energy homeostasis and lipid metabolism.

View Article and Find Full Text PDF

Phthalates, used as plasticizers, have become a ubiquitous contaminant and have been reported for their potential to induce toxicity in living organisms. Among them, di-isononyl phthalate (DiNP) has been recently used to replace di(2-ethylhexyl) phthalate (DEHP). Nowadays, there is evidence that DiNP is an endocrine-disrupting chemical; however, little is known about its effects on the endocannabinoid system (ECS) and lipid metabolism.

View Article and Find Full Text PDF

Di-isononyl phthalate (DiNP) is a high molecular weight phthalate commonly used as a plasticizer. It was introduced as a replacement for bis (2-ethylhexyl) phthalate (DEHP) which is used in the production of plasticized polyvinyl chloride (PVC). The purpose of this study was to investigate for the first time the effect of DiNP on female reproductive physiology in Danio rerio.

View Article and Find Full Text PDF

Epigenetic modifications are classified as heritable and reversible chemical modifications of chromatin that do not cause changes in DNA sequence. Changes in epigenetic modifications can be caused by exposure to certain environmental factors, such as contaminants like bisphenol A (BPA). Bisphenol A is ubiquitous in the environment and produced in large quantities, and known to have hormone-like activity, whereby disrupting endocrine function.

View Article and Find Full Text PDF

Bisphenol A (BPA) is one of the commonest Endocrine Disruptor Compounds worldwide. It interferes with vertebrate reproduction, possibly by inducing deregulation of epigenetic mechanisms. To determine its effects on female reproductive physiology and investigate whether changes in the expression levels of genes related to reproduction are caused by histone modifications, BPA concentrations consistent with environmental exposure were administered to zebrafish for three weeks.

View Article and Find Full Text PDF

Positive effects of probiotics on fish reproduction have been reported in several species. In the present study, 40 male European eels were weekly treated with recombinant hCG for 9 weeks and with three different concentrations (10(3), 10(5), and 10(6) CFU/mL) of probiotic Lactobacillus rhamnosus IMC 501 (Sinbyotec, Italy). The probiotics were daily added to the water from the sixth week of the hCG treatment.

View Article and Find Full Text PDF