Publications by authors named "Stefania Riboldi"

This paper presents a case study to support the hypothesis that religiosity and spirituality (R/S), as mood balancing factors, could facilitate the recovery process for patients suffering from bipolar disorder (BD) once they have been stabilized and are receiving appropriate support (e.g., in a residential rehabilitative center).

View Article and Find Full Text PDF

To address the need of alternatives to autologous vessels for small-calibre vascular applications (e.g. cardiac surgery), a bio-hybrid semi-degradable material composed of silk fibroin (SF) and polyurethane (Silkothane®) was herein used to fabricate very small-calibre grafts (Ø= 1.

View Article and Find Full Text PDF

Background: Performance and durability of arterio-venous grafts depend on their ability to mimic the mechanical behavior of the anastomized blood vessels. To select the most suitable synthetic graft, evaluation of the radial deformability of peripheral arteries and veins could be crucial; however, a standardized non-invasive strategy is still missing. Herein, we sought to define a novel and user-friendly clinical protocol for assessment of the arm vessel deformability.

View Article and Find Full Text PDF

To solve the problem of vascular access failure, a novel semi-degradable hybrid vascular graft, manufactured by electrospinning using silk fibroin and polyurethane (Silkothane), has been previously developed and characterized in vitro. This proof-of-concept animal study aims at evaluating the performances of Silkothane grafts in a sheep model of arteriovenous shunt, in terms of patency and short-term remodeling. Nine Silkothane grafts are implanted between the common carotid artery and the external jugular vein of nine sheep, examined by palpation three times per week, by echo-color Doppler every two weeks, and euthanized at 30, 60, and 90 days (N = 3 per group).

View Article and Find Full Text PDF

Clinically available alternatives of vascular access for long-term haemodialysis-currently limited to native arteriovenous fistulae and synthetic grafts-suffer from several drawbacks and are associated to high failure rates. Bioprosthetic grafts and tissue-engineered blood vessels are costly alternatives without clearly demonstrated increased performance. In situ tissue engineering could be the ideal approach to provide a vascular access that profits from the advantages of vascular grafts in the short-term (e.

View Article and Find Full Text PDF

Several attempts made so far to combine silk fibroin and polyurethane, in order to prepare scaffolds encompassing the bioactivity of the former with the elasticity of the latter, suffer from critical drawbacks concerning industrial and clinical applicability (e.g., separation of phases upon processing, use of solvents unaddressed by the European Pharmacopoeia, and use of degradable polyurethanes).

View Article and Find Full Text PDF

Articular cartilage has poor healing ability and cartilage injuries often evolve to osteoarthritis. Cell-based strategies aiming to engineer cartilaginous tissue through the combination of biocompatible scaffolds and articular chondrocytes represent an alternative to standard surgical techniques. In this context, perfusion bioreactors have been introduced to enhance cellular access to oxygen and nutrients, hence overcoming the limitations of static culture and improving matrix deposition.

View Article and Find Full Text PDF

Over the last decade, we have witnessed an increased recognition of the importance of 3D culture models to study various aspects of cell physiology and pathology, as well as to engineer implantable tissues. As compared to well-established 2D cell-culture systems, cell/tissue culture within 3D porous biomaterials has introduced new scientific and technical challenges associated with complex transport phenomena, physical forces, and cell-microenvironment interactions. While bioreactor-based 3D model systems have begun to play a crucial role in addressing fundamental scientific questions, numerous hurdles currently impede the most efficient utilization of these systems.

View Article and Find Full Text PDF

Purpose: Since stretching plays a key role in skeletal muscle tissue development in vivo, by making use of an innovative bioreactor and a biodegradable microfibrous scaffold (DegraPol(R)) previously developed by our group, we aimed to investigate the effect of mechanical conditioning on the development of skeletal muscle engineered constructs, obtained by seeding and culturing murine skeletal muscle cells on electrospun membranes.

Methods: Following 5 days of static culture, skeletal muscle constructs were transferred into the bioreactor and further cultured for 13 days, while experiencing a stretching pattern adapted from the literature to resemble mouse development and growth. Sample withdrawal occurred at the onset of cyclic stretching and after 7 and 10 days.

View Article and Find Full Text PDF

Skeletal muscle tissue engineering represents an attractive approach to overcome problems associated with autologous transfer of muscle tissue and provides a valid alternative in muscle regeneration enhancement. The aim of this study was to investigate the suitability, as scaffold for skeletal muscle tissue engineering, of a known biodegradable block copolymer (DegraPol) processed by electrospinning in the novel form of microfibrous membranes. Scaffolds were characterized with reference to their morphological, degradative and mechanical properties.

View Article and Find Full Text PDF