Bone microarchitecture and mineralization were determined at three-dimensional synchrotron radiation micro computed tomography in two inbred mice strains. Distal metaphysis of the left femur was imaged in three dimensions at 6.65 microm, whereas the right femur was analyzed with histomorphometry.
View Article and Find Full Text PDFBioapatite, the main constituent of mineralized tissue in mammalian bones, is a calcium-phosphate-based mineral that is similar in structure and composition to hydroxyapatite. In this work, the crystallographic structure of bioapatite in human fetuses was investigated by synchrotron radiation x-ray diffraction (XRD) and microdiffraction ( micro -XRD) techniques. Rietveld refinement analyses of XRD and micro -XRD data allow for quantitative probing of the structural modifications of bioapatite as functions of the mineralization process and gestational age.
View Article and Find Full Text PDFThe availability of three-dimensional measuring techniques coupled to specific image processing methods opens new opportunities for the analysis of bone structure. In particular, synchrotron radiation microtomography may provide three-dimensional images with spatial resolution as high as one micrometer. Moreover, the use of a monoenergetic synchrotron beam, which avoids beam-hardening effects, allows quantitative measurements of the degree of mineralization in bone samples.
View Article and Find Full Text PDF