Kainate receptors (KARs) mediate postsynaptic currents with a key impact on neuronal excitability. However, the molecular determinants controlling KAR postsynaptic localization and stabilization are poorly understood. Here, we exploit optogenetic and single-particle tracking approaches to study the role of KAR conformational states induced by glutamate binding on KAR lateral mobility at synapses.
View Article and Find Full Text PDFThe lateral mobility of neurotransmitter receptors has been shown to tune synaptic signals. Here we report that GABAA receptors (GABAARs) can diffuse between adjacent dendritic GABAergic synapses in long-living desensitized states, thus laterally spreading "activation memories" between inhibitory synapses. Glutamatergic activity limits this inter-synaptic diffusion by trapping GABAARs at excitatory synapses.
View Article and Find Full Text PDFTo reach the open state, the GABA(A) receptor (GABA(A)R) is assumed to bind two agonist molecules. Although it is currently believed that GABA(A)R could also operate in the monoliganded state, the gating properties of singly bound GABA(A)R are poorly understood and their physiological role is still obscure. In the present study, we characterize for the first time the gating properties of singly bound GABA(A)Rs by using a mutagenesis approach and we propose that monoliganded GABA(A)R contribute in shaping synaptic responses.
View Article and Find Full Text PDFTTF-1/NKX2.1, also known as T/EBP, is a homeodomain-containing gene involved in the organogenesis of the thyroid gland, lung and ventral forebrain. We have already reported that in 3T3 cells, TTF-1/NKX2.
View Article and Find Full Text PDFHMGB1 is an abundant chromatin component, so far considered ubiquitous. HMGB1 also has an extracellular signalling role: when passively released by necrotic cells, it triggers inflammation; moreover, it can be actively secreted by myeloid cells, neurons and neuronal cancer cells. We show here that HMGB1 protein is undetectable in most cells in adult mouse brain, and is present in a subset of brain cells during development, with a very complex temporal, spatial and subcellular expression pattern.
View Article and Find Full Text PDF