Granulosa cells (GCs) play crucial roles in oocyte maturation. Through gap junctions and extracellular vesicles, they mediate the exchange of molecules such as microRNAs and messenger RNAs. Different ovarian cell types exhibit unique gene expression profiles, reflecting their specialized functions and stages.
View Article and Find Full Text PDFChemotherapy regimens and radiotherapy are common strategies to fight cancer. In women, these therapies may cause side effects such as premature ovarian insufficiency (POI) and infertility. Clinical strategies to protect the ovarian reserve from the lethal effect of cancer therapies needs better understanding of the mechanisms underlying iatrogenic loss of follicle reserve.
View Article and Find Full Text PDFCancer treatments can often adversely affect the quality of life of young women. One of the most relevant negative impacts is the loss of fertility. Cyclophosphamide is one of the most detrimental chemotherapeutic drugs for the ovary.
View Article and Find Full Text PDFPremature ovarian failure and infertility are adverse effects of cancer therapies. The mechanism underlying chemotherapy-mediated depletion of the ovarian reserve remains unclear. Here, we aim to identify the signaling pathways involved in the loss of the ovarian reserve to prevent the damaging effects of chemotherapy.
View Article and Find Full Text PDFTP63 is the most ancient member of the p53 gene family. The p53 family comprises three transcription factors (p53/p63/p73). They share a high degree of homology and similar domain structure.
View Article and Find Full Text PDFMany extracellular and intracellular signals promote the c-Abl tyrosine kinase activity. c-Abl in turn triggers a multitude of changes either in protein phosphorylation or in gene expression in the cell. Yet, c-Abl takes part in diverse signaling routes because of several domains linked to its catalytic core.
View Article and Find Full Text PDFThe tumor suppressor p53 is a transcription factor that regulates key processes. But, the outcomes of the p53 response go beyond its role as a nuclear transcription factor. Sirtuin (SIRT1) regulates p53 functions as transcription factor.
View Article and Find Full Text PDFParkinson's disease (PD) is one of the most common age-related neurodegenerative diseases. This pathology causes a significant loss of dopaminergic neurons in the Substantia Nigra. Several reports have claimed a role of defective nuclear and mitochondrial DNA repair pathways in PD etiology, in particular, of the Base Excision Repair (BER) system.
View Article and Find Full Text PDFCells are continually exposed to DNA assaults from exogenous and endogenous sources. To maintain genomic integrity, cells have evolved a highly conserved mechanism for repairing DNA lesions and, in particular, DNA double strand breaks (DSBs). Emerging evidence indicates that DNA repair/signaling machinery acts in an integrated fashion with chromatin structure at damaged sites.
View Article and Find Full Text PDFThe c-Abl tyrosine kinase is implicated in diverse cellular activities including growth factor signaling, cell adhesion, oxidative stress, and DNA damage response. Studies in mouse models have shown that the kinases of the c-Abl family play a role in the development of the central nervous system. Recent reports show that aberrant c-Abl activation causes neuroinflammation and neuronal loss in the forebrain of transgenic adult mice.
View Article and Find Full Text PDFBiochem Pharmacol
November 2011
A complex regulatory network of signaling pathways safeguards genome integrity following DNA damage. When double strand breaks occur several enzymes and mediators are recruited to the sites of lesion to release a network of DNA repair processes referred to as DNA damage response (DDR). c-Abl interacts in the nucleus with several proteins implicated in distinct aspects of DNA repair.
View Article and Find Full Text PDFGerm cells are sensitive to genotoxins, and ovarian failure and infertility are major side effects of chemotherapy in young patients with cancer. Here we describe the c-Abl-TAp63 pathway activated by chemotherapeutic DNA-damaging drugs in model human cell lines and in mouse oocytes and its role in cell death. In cell lines, upon cisplatin treatment, c-Abl phosphorylates TAp63 on specific tyrosine residues.
View Article and Find Full Text PDFThe unprocessed precursor of the Nerve Growth Factor (NGF), proNGF, has additional functions, besides its initially described role as a chaperone for NGF folding. The precursor protein endows apoptotic and/or neurotrophic properties, in contrast to the mature part. The structural and molecular basis for such distinct activities are presently unknown.
View Article and Find Full Text PDFThe anti-nerve growth factor (NGF) monoclonal antibody alphaD11 is a potent antagonist that neutralizes the biological functions of its antigen in vivo. NGF antagonism is expected to be a highly effective and safe therapeutic approach in many pain states. A comprehensive functional and structural analysis of alphaD11 monoclonal antibody was carried out, showing its ability to neutralize NGF binding to either tropomyosine receptor kinase A (TrkA) or p75 receptors.
View Article and Find Full Text PDFA substantial fraction of protein interactions in the cell is mediated by families of protein modules binding to relatively short linear peptides. Many of these interactions have a high dissociation constant and are therefore suitable for supporting the formation of dynamic complexes that are assembled and disassembled during signal transduction. Extensive work in the past decade has shown that, although member domains within a family have some degree of intrinsic peptide recognition specificity, the derived interaction networks display substantial promiscuity.
View Article and Find Full Text PDF