Sugar- and lipid-derived aldehydes are reactive carbonyl species (RCS) frequently used as surrogate markers of oxidative stress in obesity. A pathogenic role for RCS in metabolic diseases of obesity remains controversial, however, partly because of their highly diffuse and broad reactivity and the lack of specific RCS-scavenging therapies. Naturally occurring histidine dipeptides (e.
View Article and Find Full Text PDFIn the last decades, inhibitors of histone deacetylases (HDAC) have become an important class of anti-cancer agents. In a previous study we described the synthesis of spiro[chromane-2,4'-piperidine]hydroxamic acid derivatives able to inhibit histone deacetylase enzymes. Herein, we present our exploration for new derivatives by replacing the piperidine moiety with various cycloamines.
View Article and Find Full Text PDFIn this account, we report the development of a series of substituted cinnamic anilides that represents a novel class of mitochondrial permeability transition pore (mPTP) inhibitors. Initial class expansion led to the establishment of the basic structural requirements for activity and to the identification of derivatives with inhibitory potency higher than that of the standard inhibitor cyclosporine-A (CsA). These compounds can inhibit mPTP opening in response to several stimuli including calcium overload, oxidative stress, and thiol cross-linkers.
View Article and Find Full Text PDFHeat-shock protein 90 (Hsp90) is a molecular chaperone involved in the stabilization of key oncogenic signaling proteins, and therefore, inhibition of Hsp90 represents a new strategy in cancer therapy. 2-Amino-7-[4-fluoro-2-(3-pyridyl)phenyl]-4-methyl-7,8-dihydro-6H-quinazolin-5-one oxime is a racemic Hsp90 inhibitor that targets the N-terminal adenosine triphosphatase site. We developed a method to resolve the enantiomers and evaluated their inhibitory activity on Hsp90 and the consequent antitumor effects.
View Article and Find Full Text PDFA series of potent non-acetylinic negative allosteric modulators of the metabotropic glutamate receptor 5 (mGlu5 NAMs) was developed starting from HTS screening hit 1. Potency was improved via iterative SAR, and physicochemical properties were optimized to deliver orally bioavailable compounds acceptable for in vivo testing. A lead molecule from the series demonstrated dose-dependent activity in the second phase of the rat formalin test from 30 mg/kg, and a preliminary PK/PD relationship was established.
View Article and Find Full Text PDFHistone Deacetylases (HDACs) have become important targets for the treatment of cancer and other diseases. In previous studies we described the development of novel spirocyclic HDAC inhibitors based on the combination of privileged structures with hydroxamic acid moieties as zinc binding group. Herein, we report further explorations, which resulted in the discovery of a new class of spiro[2H-(1,3)-benzoxazine-2,4'-piperidine] derivatives.
View Article and Find Full Text PDFA series of spiro[chromane-2,4'-piperidine] derivatives based on a previously published lead benzyl spirocycle 1 and bearing various N-aryl and N-alkylaryl substituents on the piperidine ring were prepared as novel histone deacetylase (HDAC) inhibitors. The compounds were evaluated for their abilities to inhibit nuclear HDACs, their in vitro antiproliferative activities, and in vitro ADME profiles. Based on these activities, 4-fluorobenzyl and 2-phenylethyl spirocycles were selected for further characterization.
View Article and Find Full Text PDFAn efficient total synthesis of the natural alkaloid (+)-dumetorine by using flow technology is described. The process entailed five separate steps starting from the enantiopure (S)-2-(piperidin-2-yl)ethanol 4 with 29% overall yield. Most of the reactions were carried out by exploiting solvent superheating and by using packed columns of immobilized reagents or scavengers to minimize handling.
View Article and Find Full Text PDFA series of amidopropenyl hydroxamic acid derivatives were prepared as novel inhibitors of human histone deacetylases (HDACs). Several compounds showed potency at <100 nM in the HDAC inhibition assays, sub-micromolar IC(50) values in tests against three tumor cell lines, and remarkable stability in human and mouse microsomes was observed. Three representative compounds were selected for further characterization and submitted to a selectivity profile against a series of class I and class II HDACs as well as to preliminary in vivo pharmacokinetic (PK) experiments.
View Article and Find Full Text PDFThe V-type H+ATPase is critical during the intraerythrocytic stage of the human malaria parasite Plasmodium falciparum. It is responsible for maintaining a near-neutral cytosolic pH (pH 7.3), an acidic digestive vacuole (pH 4.
View Article and Find Full Text PDFThe histone deacetylases (HDACs) are able to regulate gene expression, and histone deacetylase inhibitors (HDACi) emerged as a new class of agents in the treatment of cancer as well as other human disorders such as neurodegenerative diseases. In the present investigation, we report on the synthesis and biological evaluation of compounds derived from the expansion of a HDAC inhibitor scaffold having N-hydroxy-3-phenyl-2-propenamide and N-hydroxy-3-(pyridin-2-yl)-2-propenamide as core structures and containing a phenyloxopropenyl moiety, either unsubstituted or substituted by a 4-methylpiperazin-1-yl or 4-methylpiperazin-1-ylmethyl group. The compounds were evaluated for their ability to inhibit nuclear HDACs, as well as for their in vitro antiproliferative activity.
View Article and Find Full Text PDFA continuous flow tubing reactor can be used to readily transform methyl or ethyl carboxylic esters into the corresponding hydroxamic acids. Flow rate, reactor volume, and temperature were optimized for the preparation of a small collection of hydroxamic acids. Synthetic advantages were identified as an increased reaction rate and higher product purity.
View Article and Find Full Text PDFOptimisation of urea (5), identified from high throughput screening and subsequent array chemistry, has resulted in the identification of pyridine carboxamide (33) which is a potent motilin receptor agonist possessing favourable physicochemical and ADME profiles. Compound (33) has demonstrated prokinetic-like activity both in vitro and in vivo in the rabbit and therefore represents a promising novel small molecule motilin receptor agonist for further evaluation as a gastroprokinetic agent.
View Article and Find Full Text PDFHigh-throughput screening resulted in the identification of a series of novel motilin receptor agonists with relatively low molecular weights. The series originated from an array of biphenyl derivatives designed to target 7-transmembrane (7-TM) receptors. Further investigation of the structure-activity relationship within the series resulted in the identification of compound (22) as a potent and selective agonist at the motilin receptor.
View Article and Find Full Text PDFThe synthesis and SAR of a new series of potent and selective dopamine D(3) receptor antagonists is reported. The introduction of a tricyclic [h]-fused benzazepine moiety on the recently disclosed scaffold of 1,2,4-triazol-3-yl-thiopropyl-tetrahydrobenzazepines is reported. A full rat pharmacokinetic characterization is also reported.
View Article and Find Full Text PDFChemical modifications of dimiracetam, a bicyclic analogue of the nootropic drug piracetam, afforded a small set of novel derivatives that were investigated in in vivo models of neuropathic pain. Compounds 5, 7 and 8 displayed a very promising antihyperalgesic profile in rat models of neuropathic pain induced by both chronic constriction injury of the sciatic nerve and streptozotocin. The compounds completely reverted the reduction of pain threshold evaluated by the paw pressure test.
View Article and Find Full Text PDFThis review describes the patent applications and relevant scientific literature published during 2002 in the field of novel neurokinin receptor antagonists, with an emphasis on the medicinal chemistry of recent patent publications. A brief update on the development status of compounds including: the neurokinin-1 receptor antagonists aprepitant (Merck & Co Inc), vofopitant, ezlopitant (Pfizer Inc), R-673 (F Hoffmann-La Roche Ltd); the neurokinin-2 receptor antagonists nepadutant (Menarini Ricerche SpA), saredutant (Sanofi-Synthelabo), SR-144190 (Sanofi-Synthelabo) and UK-290795 (Pfizer Inc); and the neurokinin-3 receptor antagonists osanetant (Sanofi-Synthelabo) and talnetant (GlaxoSmithKline plc) will be given. The review also reports the recent published patent literature in the area of novel therapeutic uses and novel formulations and combinations claimed for neurokinin receptor antagonists.
View Article and Find Full Text PDFAlkaloids extracted from the Papaverum somniferum are among the most powerfully acting and clinically used drugs for diseases of the central nervous system, in particular for pain. The basic ring system, common to these opiate alkaloids, is the morphinan skeleton, which in the last 50 years has been chemically manipulated to obtain compounds with improved potency and increased selectivity toward different populations of opioid receptors. Despite a huge amount of research, interest surrounding these compounds is still high.
View Article and Find Full Text PDFAmides of (2Z,4E)-5-[(5,6-dichloroindol-2-yl)]-2-methoxy-N-[3-[4-[3-(carboxymethoxy)phenyl)] piperazin-1-yl]propyl]-2,4-pentadienamide (1) and of 5-(5,6-dichloro-2-indolyl)-2-methoxy-2,4-pentadienoic acid (2) are strong inhibitors of the vacuolar ATPase located on the plasma membrane of osteoclasts. In order to understand which V-ATPase subunit is involved in the interaction with these novel inhibitors, analogues containing a photoactivable group and an iodine atom were designed. A series of alcohols or amines containing the photoactivable trifluoroaziridinophenyl or benzophenone moiety and an iodine atom were linked to the above acids via an ester or amide group.
View Article and Find Full Text PDF