Background: Hypertension is one of the main risk factors for dementia and cognitive impairment.
Methods: We used the model of transverse aortic constriction to induce chronic pressure overload in mice. We characterized brain injury by advanced translational applications of magnetic resonance imaging.
Angiotensin II (AngII) is a peptide hormone that affects the cardiovascular system, not only through typical effects on the vasculature, kidneys, and heart, but also through less understood roles mediated by the brain and the immune system. Here, we address the hard-wired neural connections within the autonomic nervous system that modulate splenic immunity. Chronic AngII infusion triggers burst firing of the vagus nerve celiac efferent, an effect correlated with noradrenergic activation in the spleen and T cell egress.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
October 2018
Objective- EMILIN-1 (elastin microfibrils interface located protein-1) protein inhibits pro-TGF-β (transforming growth factor-β) proteolysis and limits TGF-β bioavailability in vascular extracellular matrix. Emilin1 null mice display increased vascular TGF-β signaling and are hypertensive. Because EMILIN-1 is expressed in vessels from embryonic life to adulthood, we aimed at unravelling whether the hypertensive phenotype of Emilin1 null mice results from a developmental defect or lack of homeostatic role in the adult.
View Article and Find Full Text PDFAims: Chronic increase of mineralocorticoids obtained by administration of deoxycorticosterone acetate (DOCA) results in salt-dependent hypertension in animals. Despite the lack of a generalized sympathoexcitation, DOCA-salt hypertension has been also associated to overdrive of peripheral nervous system in organs typically targeted by blood pressure (BP), as kidneys and vasculature. Aim of this study was to explore whether DOCA-salt recruits immune system by overactivating sympathetic nervous system in lymphoid organs and whether this is relevant for hypertension.
View Article and Find Full Text PDFAortic aneurysms are life-threatening conditions with effective treatments mainly limited to emergency surgery or trans-arterial endovascular stent grafts, thus calling for the identification of specific molecular targets. Genetic studies have highlighted controversial roles of transforming growth factor β (TGF-β) signaling in aneurysm development. Here, we report on aneurysms developing in adult mice after smooth muscle cell (SMC)-specific inactivation of Smad4, an intracellular transducer of TGF-β.
View Article and Find Full Text PDFThe crucial role of the immune system in hypertension is now widely recognized. We previously reported that hypertensive challenges couple the nervous drive with immune system activation, but the physiological and molecular mechanisms of this connection are unknown. Here, we show that hypertensive challenges activate splenic sympathetic nerve discharge to prime immune response.
View Article and Find Full Text PDFRev Esp Cardiol (Engl Ed)
January 2017
Introduction And Objectives: Cardiovascular diseases, including cardiomyopathy, are the major complications in diabetes. A deeper understanding of the molecular mechanisms leading to cardiomyopathy is critical for developing novel therapies. We proposed phosphoinositide3-kinase gamma (PI3Kγ) as a molecular target against diabetic cardiomyopathy, given the role of PI3Kγ in cardiac remodeling to pressure overload.
View Article and Find Full Text PDFAlthough PI3Kγ has been extensively investigated in inflammatory and cardiovascular diseases, the exploration of its functions in the brain is just at dawning. It is known that PI3Kγ is present in neurons and that the lack of PI3Kγ in mice leads to impaired synaptic plasticity, suggestive of a role in behavioral flexibility. Several neuropsychiatric disorders, such as attention-deficit/hyperactivity disorder (ADHD), involve an impairment of behavioral flexibility.
View Article and Find Full Text PDFHypertension is a health problem affecting over 1 billion people worldwide. How the immune system gets activated under hypertensive stimuli to contribute to blood pressure elevation is a fascinating enigma. Here we showed a splenic role for placental growth factor (PlGF), which accounts for the onset of hypertension, through immune system modulation.
View Article and Find Full Text PDF