Publications by authors named "Stefania Diquattro"

The role of compost and biochar in the recovery of As and Sb-polluted soils is poorly investigated, as well as the influence of their application rates on soil health and quality. In this study, we therefore investigated the effectiveness over time (2, 4, and 6 months, M) of a municipal solid waste compost (MSWC) and a biochar (BC), applied at 10 and 30% rates, and of selected mixtures (MIX; applied at 10 and 30% total rates, 1:1 ratio of MSWC and BC), on labile As and Sb in a polluted soil from an abandoned Sb mine (Djebel Hamimat, Algeria). At the same timepoints, the amendment impact on soil chemistry was also monitored, while the activity and diversity of the resident microbial communities were investigated at 6 M.

View Article and Find Full Text PDF

The combination of soil amendments with plants can be a viable option for restoring the functionality of PTEs-contaminated soils. Soil recovery could be further optimized through the mixed cropping of plant species (e.g.

View Article and Find Full Text PDF

Compost from municipal solid waste (MSWC) can represent a resource for the environmental management of soils contaminated with potentially toxic elements (PTEs), since it can reduce their mobility and improve soil fertility. However, the long-term impact of compost on soil recovery has been poorly investigated. To this end, the influence of a MSWC added at different rates (i.

View Article and Find Full Text PDF

The effect of long-term ageing (up to 700 days) on the mobility, potential bioavailability and bioaccessibility of antimony (Sb) was investigated in two soils (S1: pH 8.2; S2: pH 4.9) spiked with two Sb concentrations (100 and 1000 mg·kg).

View Article and Find Full Text PDF

Softwood-derived biochar (5% w/w) was added to two mining soils (S1 and S2) contaminated with Cd (4.8-74 mg kg), Pb (318-1899 mg kg) and Zn (622-3803 mg kg), to evaluate its immobilization capabilities towards such potentially toxic elements (PTEs). Biochar addition (S + B) increased soil pH, organic carbon content, extractable phosphorous and calcium.

View Article and Find Full Text PDF

Antimony (Sb) and its compounds are emerging priority pollutants which pose a serious threat to the environment. The aim of this study was to evaluate the short-term fate of antimonate added to different soils (S1 and S2) with respect to its mobility and impact on soil microbial communities and soil biochemical functioning. To this end, S1 (sandy clay loam, pH 8.

View Article and Find Full Text PDF

The aim of this study was to assess the influence of a municipal solid waste compost (MSWC) on the mobility, bioaccessibility and toxicity of several potentially toxic elements (PTE), i.e. Pb (15,383 mg kg), Zn (4076 mg kg), Cu (181 mg kg), Sb (109 mg kg), Cd (67 mg kg) and As (49 mg kg), present in a contaminated sub-acidic soil (pH = 5.

View Article and Find Full Text PDF

In this study, we investigated the Sb(V) adsorption on ferrihydrite (Fh) at different pH values, in the presence and absence of common competing anions in soil such as phosphate (P(V)) and arsenate (As(V)). Batch adsorption experiments, carried out at pH 4.5, 6.

View Article and Find Full Text PDF

The ability of two municipal solid waste composts (MSW-Cs) to sorb antimony(V) in acidic conditions (pH 4.5) was investigated. Sorption isotherms and kinetics showed that both MSW-Cs could sorb antimony(V), even if in different amounts (~ 0.

View Article and Find Full Text PDF

Herbivorous mammal dung supports a large variety of fimicolous fungi able to produce different bioactive secondary metabolites to compete with other organisms. Recently, the organic extracts of the Solid State Fermentation (SSF) cultures of Cleistothelebolus nipigonensis and Neogymnomyces virgineus, showing strong antifungal activity, were preliminarily investigated. This manuscript reports the isolation of the main metabolites identified, using spectroscopic and optical methods, as fusaproliferin (1) and terpestacin (2).

View Article and Find Full Text PDF