Arg324 of sarcoplasmic reticulum Ca-ATPase forms electrostatic interactions with the phosphate moiety of phospholipids in most reaction states, and a hydrogen bond with Tyr122 in other states. Using site-directed mutagenesis, we explored the functional roles of Arg324 interactions, especially those with lipids, which at first glance might seem too weak to modulate the function of such a large membrane protein. The hydrogen bond forms transiently and facilitates Ca binding from the cytoplasmic side.
View Article and Find Full Text PDFThe sarcoendoplasmic reticulum Ca-ATPase (SERCA) transports Ca ions across the membrane coupled with ATP hydrolysis. Crystal structures of ligand-stabilized molecules indicate that the movement of actuator (A) domain plays a crucial role in Ca translocation. However, the actual structural movements during the transitions between intermediates remain uncertain, in particular, the structure of E2PCa has not been solved.
View Article and Find Full Text PDFSarco(endo)plasmic reticulum Ca-ATPase catalyzes ATP-driven Ca transport from the cytoplasm to the lumen and is critical for a range of cell functions, including muscle relaxation. Here, we investigated the effects of the headgroups of the 1-palmitoyl-2-oleoyl glycerophospholipids phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), and phosphatidylglycerol (PG) on sarcoplasmic reticulum (SR) Ca-ATPase embedded into a nanodisc, a lipid-bilayer construct harboring the specific lipid. We found that Ca-ATPase activity in a PC bilayer is comparable with that of SR vesicles and is suppressed in the other phospholipids, especially in PS.
View Article and Find Full Text PDFCa transport by sarcoplasmic reticulum Ca-ATPase involves ATP-dependent phosphorylation of a catalytic aspartic acid residue. The key process, luminal Ca release occurs upon phosphoenzyme isomerization, abbreviated as E1PCa (reactive to ADP regenerating ATP and with two occluded Ca at transport sites) → E2P (insensitive to ADP and after Ca release). The isomerization involves gathering of cytoplasmic actuator and phosphorylation domains with second transmembrane helix (M2), and is epitomized by protection of a Leu-proteinase K (prtK) cleavage site on M2.
View Article and Find Full Text PDFThe cytoplasmic actuator domain of the sarco(endo)plasmic reticulum Ca-ATPase undergoes large rotational movements that influence the distant transmembrane transport sites, and a long second transmembrane helix (M2) connected with this domain plays critical roles in transmitting motions between the cytoplasmic catalytic domains and transport sites. Here we explore possible structural roles of Gly between the cytoplasmic (M2c) and transmembrane (M2m) segments of M2 by introducing mutations that limit/increase conformational freedom. Alanine substitution G105A markedly retards isomerization of the phosphoenzyme intermediate (E1PCa → E2PCa → E2P + 2Ca), and disrupts Ca occlusion in E1PCa and E2PCa at the transport sites uncoupling ATP hydrolysis and Ca transport.
View Article and Find Full Text PDFThe membrane-bound protein family, P-type ATPases, couples ATP hydrolysis with substrate transport across the membrane and forms an obligatory auto-phosphorylated intermediate in the transport cycle. The metal fluoride compounds, BeF x , AlF x , and MgF x , as phosphate analogs stabilize different enzyme structural states in the phosphoryl transfer/hydrolysis reactions, thereby fixing otherwise short-lived intermediate and transient structural states and enabling their biochemical and atomic-level crystallographic studies. The compounds thus make an essential contribution for understanding of the ATP-driven transport mechanism.
View Article and Find Full Text PDFThe mechanism whereby events in and around the catalytic site/head of Ca(2+)-ATPase effect Ca(2+) release to the lumen from the transmembrane helices remains elusive. We developed a method to determine deoccluded bound Ca(2+) by taking advantage of its rapid occlusion upon formation of E1PCa2 and of stabilization afforded by a high concentration of Ca(2+). The assay is applicable to minute amounts of Ca(2+)-ATPase expressed in COS-1 cells.
View Article and Find Full Text PDFThe actuator (A) domain of sarco(endo)plasmic reticulum Ca(2+)-ATPase not only plays a catalytic role but also undergoes large rotational movements that influence the distant transport sites through connections with transmembrane helices M1 and M2. Here we explore the importance of long helix M2 and its junction with the A domain by disrupting the helix structure and elongating with insertions of five glycine residues. Insertions into the membrane region of M2 and the top junctional segment impair Ca(2+) transport despite reasonable ATPase activity, indicating that they are uncoupled.
View Article and Find Full Text PDFSarcoplasmic reticulum Ca(2+)-ATPase couples the motions and rearrangements of three cytoplasmic domains (A, P, and N) with Ca(2+) transport. We explored the role of electrostatic force in the domain dynamics in a rate-limiting phosphoenzyme (EP) transition by a systematic approach combining electrostatic screening with salts, computer analysis of electric fields in crystal structures, and mutations. Low KCl concentration activated and increasing salt above 0.
View Article and Find Full Text PDFDuring Ca(2+) transport by sarcoplasmic reticulum Ca(2+)-ATPase, the conformation change of ADP-sensitive phosphoenzyme (E1PCa(2)) to ADP-insensitive phosphoenzyme (E2PCa(2)) is followed by rapid Ca(2+) release into the lumen. Here, we find that in the absence of K(+), Ca(2+) release occurs considerably faster than E1PCa(2) to E2PCa(2) conformation change. Therefore, the lumenal Ca(2+) release pathway is open to some extent in the K(+)-free E1PCa(2) structure.
View Article and Find Full Text PDFWe have developed a stable analog for the ADP-insensitive phosphoenzyme intermediate with two occluded Ca(2+) at the transport sites (E2PCa(2)) of sarcoplasmic reticulum Ca(2+)-ATPase. This is normally a transient intermediate state during phosphoenzyme isomerization from the ADP-sensitive to ADP-insensitive form and Ca(2+) deocclusion/release to the lumen; E1PCa(2) --> E2PCa(2) --> E2P + 2Ca(2+). Stabilization was achieved by elongation of the Glu(40)-Ser(48) loop linking the Actuator domain and M1 (1st transmembrane helix) with four glycine insertions at Gly(46)/Lys(47) and by binding of beryllium fluoride (BeF(x)) to the phosphorylation site of the Ca(2+)-bound ATPase (E1Ca(2)).
View Article and Find Full Text PDFSarco(endo)plasmic reticulum Ca(2+)-ATPase is a representative member of P-type cation transporting ATPases and catalyzes Ca(2+) transport coupled with ATP hydrolysis. The ATPase possesses three cytoplasmic domains (N, P, and A) and ten transmembrane helices (M1-M10). Ca(2+) binding at the transport sites in the transmembrane domain activates the ATPase and then the catalytic aspartate is auto-phosphorylated to form the phosphorylated intermediate (EP).
View Article and Find Full Text PDFRoles of hydrogen bonding interaction between Ser(186) of the actuator (A) domain and Glu(439) of nucleotide binding (N) domain seen in the structures of ADP-insensitive phosphorylated intermediate (E2P) of sarco(endo)plasmic reticulum Ca(2+)-ATPase were explored by their double alanine substitution S186A/E439A, swap substitution S186E/E439S, and each of these single substitutions. All the mutants except the swap mutant S186E/E439S showed markedly reduced Ca(2+)-ATPase activity, and S186E/E439S restored completely the wild-type activity. In all the mutants except S186E/E439S, the isomerization of ADP-sensitive phosphorylated intermediate (E1P) to E2P was markedly retarded, and the E2P hydrolysis was largely accelerated, whereas S186E/E439S restored almost the wild-type rates.
View Article and Find Full Text PDFAs a stable analog for ADP-sensitive phosphorylated intermediate of sarcoplasmic reticulum Ca(2+)-ATPase E1PCa(2).Mg, a complex of E1Ca(2).BeF(x), was successfully developed by addition of beryllium fluoride and Mg(2+) to the Ca(2+)-bound state, E1Ca(2).
View Article and Find Full Text PDFTyr(122)-hydrophobic cluster (Y122-HC) is an interaction network formed by the top part of the second transmembrane helix and the cytoplasmic actuator and phosphorylation domains of sarcoplasmic reticulum Ca(2+)-ATPase. We have previously found that Y122-HC plays critical roles in the processing of ADP-insensitive phosphoenzyme (E2P) after its formation by the isomerization from ADP-sensitive phosphoenzyme (E1PCa(2)) (Wang, G., Yamasaki, K.
View Article and Find Full Text PDFThe functional importance of the length of the A/M1 linker (Glu(40)-Ser(48)) connecting the actuator domain and the first transmembrane helix of sarcoplasmic reticulum Ca(2+)-ATPase was explored by its elongation with glycine insertion at Pro(42)/Ala(43) and Gly(46)/Lys(47). Two or more glycine insertions at each site completely abolished ATPase activity. The isomerization of phosphoenzyme (EP) intermediate from the ADP-sensitive form (E1P) to the ADP-insensitive form (E2P) was markedly accelerated, but the decay of EP was completely blocked in these mutants.
View Article and Find Full Text PDFWe examined possible defects of sarco(endo)plasmic reticulum Ca2+-ATPase 2b (SERCA2b) associated with its 51 mutations found in Darier disease (DD) pedigrees, i.e. most of the substitution and deletion mutations of residues reported so far.
View Article and Find Full Text PDFThe structural natures of stable analogues for the ADP-insensitive phosphoenzyme (E2P) of Ca(2+)-ATPase formed in sarcoplasmic reticulum vesicles, i.e. the enzymes with bound beryllium fluoride (BeF.
View Article and Find Full Text PDFWe explored, by mutational substitutions and kinetic analysis, possible roles of the four residues involved in the hydrogen-bonding or ionic interactions found in the Ca2+-bound structure of sarcoplasmic reticulum Ca2+-ATPase, Tyr(122)-Arg(324), and Glu(123)-Arg(334) at the top part of second transmembrane helix (M2) connected to the A domain and fourth transmembrane helix (M4) in the P domain. The observed substitution effects indicated that Glu(123), Arg(334), and Tyr(122) contributed to the rapid transition between the Ca2+-unbound and bound states of the unphosphorylated enzyme. Results further showed the more profound inhibitory effects of the substitutions in the M4/P domain (Arg(324) and Arg(334)) upon the isomeric transition of phosphorylated intermediate (EP) (loss of ADP sensitivity) and those in M2/A domain (Tyr(122) and Glu(123)) upon the subsequent processing and hydrolysis of EP.
View Article and Find Full Text PDFPossible roles of the Glu40-Ser48 loop connecting A domain and the first transmembrane helix (M1) in sarcoplasmic reticulum Ca(2+)-ATPase (SERCA1a) were explored by mutagenesis. Deletions of any single residues in this loop caused almost complete loss of Ca(2+)-ATPase activity, while their substitutions had no or only slight effects. Single deletions or substitutions in the adjacent N- and C-terminal regions of the loop (His32-Asn39 and Leu49-Ile54) had no or only slight effects except two specific substitutions of Asn39 found in SERCA2b in Darier's disease pedigrees.
View Article and Find Full Text PDF