Publications by authors named "Stefania Carobbio"

The adipose tissue organ is organised as distinct anatomical depots located all along the body axis, and it is constituted of three different types of adipocytes: white, beige and brown, which are integrated with vascular, immune, neural, and extracellular stroma cells. These distinct adipocytes serve different specialised functions. The main function of white adipocytes is to ensure healthy storage of excess nutrients/energy and its rapid mobilisation to supply the demand of energy imposed by physiological cues in other organs, whereas brown and beige adipocytes are designed for heat production through uncoupling lipid oxidation from energy production.

View Article and Find Full Text PDF

The in vitro oxygen microenvironment profoundly affects the capacity of cell cultures to model physiological and pathophysiological states. Cell culture is often considered to be hyperoxic, but pericellular oxygen levels, which are affected by oxygen diffusivity and consumption, are rarely reported. Here, we provide evidence that several cell types in culture actually experience local hypoxia, with important implications for cell metabolism and function.

View Article and Find Full Text PDF

The primary role of adipose tissue stem cells (ADSCs) is to support the function and homeostasis of adipose tissue in physiological and pathophysiological conditions. However, when ADSCs become dysfunctional in diseases such as obesity and cancer, they become impaired, undergo signalling changes, and their epigenome is altered, which can have a dramatic effect on human health. In more recent years, the therapeutic potential of ADSCs in regenerative medicine, wound healing, and for treating conditions such as cancer and metabolic diseases has been extensively investigated with very promising results.

View Article and Find Full Text PDF
Article Synopsis
  • The study looks at how the outer structure of fat tissue, called the extracellular matrix (ECM), changes in brown fat (BAT) and how it affects body temperature regulation and obesity.
  • Researchers found that when mice eat a high-fat diet, it causes problems in the brown fat, leading to inflammation and less fat-burning ability.
  • The findings suggest that understanding these changes in ECM can help explain why brown fat doesn't work properly in people with obesity.
View Article and Find Full Text PDF

Adipose tissue from pheochromocytoma patients acquires brown fat features, making it a valuable model for studying the mechanisms that control thermogenic adipose plasticity in humans. Transcriptomic analyses revealed a massive downregulation of splicing machinery components and splicing regulatory factors in browned adipose tissue from patients, with upregulation of a few genes encoding RNA-binding proteins potentially involved in splicing regulation. These changes were also observed in cell culture models of human brown adipocyte differentiation, confirming a potential involvement of splicing in the cell-autonomous control of adipose browning.

View Article and Find Full Text PDF

Objective: The metalloprotease ADAM17 (also called TACE) plays fundamental roles in homeostasis by shedding key signaling molecules from the cell surface. Although its importance for the immune system and epithelial tissues is well-documented, little is known about the role of ADAM17 in metabolic homeostasis. The purpose of this study was to determine the impact of ADAM17 expression, specifically in adipose tissues, on metabolic homeostasis.

View Article and Find Full Text PDF

The white adipose tissue's primary roles are to store and mobilise energy, which is very different from the brown adipose tissue's function of using fuel to generate heat and maintain the body temperature. The adipose tissues (ATs), co-ordinately with the other organs, sense energetic demands and inform of their reserves before embarking on energetically demanding physiological functions. It is not surprising that ATs exhibit highly integrated regulatory mechanisms mediated by a diversified secretome, including adipokines, lipokines, metabolites and a repertoire of extracellular miRNAs that contribute to integrating the function of the AT niche and connect the AT through paracrine and endocrine effects with the whole organism.

View Article and Find Full Text PDF

Increasing brown adipose tissue (BAT) mass and activation is a therapeutic strategy to prevent and treat obesity and associated complications. Obese and diabetic patients possess less BAT; thus, finding an efficient way to expand their mass is necessary. There is limited knowledge about how human BAT develops, differentiates, and is optimally activated.

View Article and Find Full Text PDF

CRISPR activation (CRISPRa) is an important tool to perturb transcription, but its effectiveness varies between target genes. We employ human pluripotent stem cells with thousands of randomly integrated barcoded reporters to assess epigenetic features that influence CRISPRa efficacy. Basal expression levels are influenced by genomic context and dramatically change during differentiation to neurons.

View Article and Find Full Text PDF

Brown adipose tissue (BAT) thermogenesis affects energy balance, and thereby it has the potential to induce weight loss and to prevent obesity. Here, we document a macroautophagic/autophagic-dependent mechanism of peroxisome proliferator-activated receptor gamma (PPARG) activity regulation that induces brown adipose differentiation and thermogenesis and that is mediated by TP53INP2. Disruption of TP53INP2-dependent autophagy reduced brown adipogenesis in cultured cells.

View Article and Find Full Text PDF

Macrophages rely on tightly integrated metabolic rewiring to clear dying neighboring cells by efferocytosis during homeostasis and disease. Here we reveal that glutaminase-1-mediated glutaminolysis is critical to promote apoptotic cell clearance by macrophages during homeostasis in mice. In addition, impaired macrophage glutaminolysis exacerbates atherosclerosis, a condition during which, efficient apoptotic cell debris clearance is critical to limit disease progression.

View Article and Find Full Text PDF

Macrophages exhibit a spectrum of activation states ranging from classical to alternative activation. Alternatively, activated macrophages are involved in diverse pathophysiological processes such as confining tissue parasites, improving insulin sensitivity or promoting an immune-tolerant microenvironment that facilitates tumour growth and metastasis. Recently, the metabolic regulation of macrophage function has come into focus as both the classical and alternative activation programmes require specific regulated metabolic reprogramming.

View Article and Find Full Text PDF

Objective: Non-alcoholic fatty liver disease (NAFLD) is a silent pandemic associated with obesity and the metabolic syndrome, and also increases cardiovascular- and cirrhosis-related morbidity and mortality. A complete understanding of adaptive compensatory metabolic programmes that modulate non-alcoholic steatohepatitis (NASH) progression is lacking.

Methods And Results: Transcriptomic analysis of liver biopsies in patients with NASH revealed that NASH progression is associated with rewiring of metabolic pathways, including upregulation of de novo lipid/cholesterol synthesis and fatty acid remodelling.

View Article and Find Full Text PDF
Article Synopsis
  • Obesity is a significant risk factor for diseases related to heart and metabolism, but some people with obesity don’t develop these health issues.
  • Researchers have found 62 genetic loci where the same genetic variant is linked to both increased body fat and a lower risk of cardiometabolic diseases, suggesting complex interactions between genetics and health outcomes.
  • The study highlights key genes involved in fat distribution, adipocyte (fat cell) function, insulin signaling, energy expenditure, tissue "browning," and inflammation, indicating potential targets for treatments aimed at reducing disease risk associated with obesity.
View Article and Find Full Text PDF
Article Synopsis
  • Scientists are trying to find ways to increase brown fat cells in people to help with obesity and diabetes.
  • Brown fat is important because it helps burn energy, but obese and diabetic people have less of it.
  • Researchers have created a new method to turn special stem cells into brown fat cells, which can help study how brown fat develops and works in humans.
View Article and Find Full Text PDF

Muscle regeneration is sustained by infiltrating macrophages and the consequent activation of satellite cells. Macrophages and satellite cells communicate in different ways, but their metabolic interplay has not been investigated. Here we show, in a mouse model, that muscle injuries and ageing are characterized by intra-tissue restrictions of glutamine.

View Article and Find Full Text PDF

Objective: Obesity is the result of positive energy balance. It can be caused by excessive energy consumption but also by decreased energy dissipation, which occurs under several conditions including when the development or activation of brown adipose tissue (BAT) is impaired. Here we evaluated whether iRhom2, the essential cofactor for the Tumour Necrosis Factor (TNF) sheddase ADAM17/TACE, plays a role in the pathophysiology of metabolic syndrome.

View Article and Find Full Text PDF

Group-2 innate lymphoid cells (ILC2), type-2 cytokines, and eosinophils have all been implicated in sustaining adipose tissue homeostasis. However, the interplay between the stroma and adipose-resident immune cells is less well understood. We identify that white adipose tissue-resident multipotent stromal cells (WAT-MSCs) can act as a reservoir for IL-33, especially after cell stress, but also provide additional signals for sustaining ILC2.

View Article and Find Full Text PDF

Phosphorylation of the translation initiation factor eIF2α within the mediobasal hypothalamus is known to suppress food intake, but the role of the eIF2α phosphatases in regulating body weight is poorly understood. Mice deficient in active PPP1R15A, a stress-inducible eIF2α phosphatase, are healthy and more resistant to endoplasmic reticulum stress than wild type controls. We report that when female Ppp1r15a mutant mice are fed a high fat diet they gain less weight than wild type littermates owing to reduced food intake.

View Article and Find Full Text PDF

The adipose organ portrays adipocytes of diverse tones: white, brown and beige, each type with distinct functions. Adipocytes orchestrate their adaptation and expansion to provide storage to excess nutrients, the quick mobilisation of fuel to supply peripheral functional demands, insulation, and, in their thermogenic form, heat generation to maintain core body temperature. Thermogenic adipocytes could be targets for anti-obesity and anti-diabetic therapeutic approaches aiming to restore adipose tissue functionality and increase energy dissipation.

View Article and Find Full Text PDF

Aims: Familial partial lipodystrophic syndrome 3 (FPLD3) is associated with mutations in the transcription factor PPARγ. One of these mutations, the P467L, confers a dominant negative effect. We and others have previously investigated the pathophysiology associated with this mutation using a humanized mouse model that recapitulates most of the clinical symptoms observed in patients who have been phenotyped under different experimental conditions.

View Article and Find Full Text PDF

Obesity is a major health problem without satisfactory pharmacological treatment. A promising strategy is to promote energy dissipation by activating brown/beige adipose tissue. However, for this strategy to succeed it requires improving the transferability amongst cellular, murine, and human systems and bridging the gap between basic and clinical research.

View Article and Find Full Text PDF

The adipose tissue organ is organised as distinct anatomical depots located all along the body axis and it is constituted of three different types of adipocytes : white, beige and brown which are integrated with vascular, immune, neural and extracellular stroma cells. These distinct adipocytes serve different specialised functions. The main function of white adipocytes is to ensure healthy storage of excess nutrients/energy and its rapid mobilisation to supply the demand of energy imposed by physiological cues in other organs, whereas brown and beige adipocytes are designed for heat production through uncoupling lipid oxidation from energy production.

View Article and Find Full Text PDF