The application of biocatalysis has become essential in both academic and industrial domains for the asymmetric synthesis of chiral amines, and it serves as an alternative tool to transition-metal catalysis and complements traditional chemical methods. It relies on the swift expansion of available processes, primarily as a result of advanced tools for enzyme discovery, combined with high-throughput laboratory evolution techniques for optimizing biocatalysts. This concept paper explores the utilization of non-conventional media such as ether-type solvents, deep eutectic solvents, and micellar catalysis to enhance biocatalytic reactions for chiral amine synthesis.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
September 2022
Inhaled crystalline silica causes inflammatory lung diseases, but the mechanism for its unique activity compared to other oxides remains unclear, preventing the development of potential therapeutics. Here, the molecular recognition mechanism between membrane epitopes and "nearly free silanols" (NFS), a specific subgroup of surface silanols, is identified and proposed as a novel broad explanation for particle toxicity in general. Silica samples having different bulk and surface properties, specifically different amounts of NFS, are tested with a set of membrane systems of decreasing molecular complexity and different charge.
View Article and Find Full Text PDF