Our ability to study and valorize the lignin fraction of biomass is hampered by the fundamental and still unmet challenge of precisely quantifying native lignin's structural features. Here, we developed a rapid elevated-temperature H-C Heteronuclear Single-Quantum Coherence Zero (HSQC) NMR method that enables this precise quantification of native lignin structural characteristics even with whole plant cell wall (WPCW) NMR spectroscopy, overcoming fast spin relaxation in the gel phase. We also formulated a Gaussian fitting algorithm to perform automatic and reliable spectral integration.
View Article and Find Full Text PDFConcerns over the sustainability and end-of-life properties of fossil-derived surfactants have driven interest in bio-based alternatives. Lignocellulosic biomass with its polar functional groups is an obvious feedstock for surfactant production but its use is limited by process complexity and low yield. Here, we present a simple two-step approach to prepare bio-based amphiphiles directly from hemicellulose and lignin at high yields (29 % w/w based on the total raw biomass and >80 % w/w of these two fractions).
View Article and Find Full Text PDFThe amphiphilic chemical structure of native lignin, composed by a hydrophobic aromatic core and hydrophilic hydroxy groups, makes it a promising alternative for the development of bio-based surface-active compounds. However, the severe conditions traditionally needed during biomass fractionation make lignin prone to condensation and cause it to lose hydrophilic hydroxy groups in favour of the formation of C-C bonds, ultimately decreasing lignin's abilities to lower surface tension of water/oil mixtures. Therefore, it is often necessary to further functionalize lignin in additional synthetic steps in order to obtain a surfactant with suitable properties.
View Article and Find Full Text PDFLignin has emerged as an attractive alternative in the search for more eco-friendly and less costly materials for enzyme immobilization. In this work, the terephthalic aldehyde-stabilization of lignin is carried out during its extraction to develop a series of functionalized lignins with a range of reactive groups (epoxy, amine, aldehyde, metal chelates). This expands the immobilization to a pool of enzymes (carboxylase, dehydrogenase, transaminase) by different binding chemistries, affording immobilization yields of 64-100 %.
View Article and Find Full Text PDFLignin depolymerization could provide an attractive renewable aromatic feedstock for the chemical industry. Past studies have suggested that lignin structural features such as ether content are correlated to lignin's upgradeability. An obstacle to the development of a conclusive causal relationship between lignin structure and upgradeability has been the difficulty to quantitatively measure lignin structural features.
View Article and Find Full Text PDFThe synthesis of N-benzyl- and N-cyclohexylammonium resorcinarene trifluoroacetate (TFA) and triflate (OTf) salt receptors was investigated. Solid-state analysis by single-crystal X-ray diffraction revealed that the N-alkylammonium resorcinarene salts (NARSs) with different upper substituents had different cavity sizes and different affinities for anions. Anion-exchange experiments by mixing equimolar amounts of N-benzylammonium resorcinarene trifluoroacetate and N-cyclohexylammonium resorcinarene triflate, as well as N-benzylammonium resorcinarene triflate and N-cyclohexylammonium resorcinarene trifluoroacetate showed that the NARS with flexible benzyl groups preferred the larger OTf anion, whereas the rigid cyclohexyl groups preferred the smaller TFA anions.
View Article and Find Full Text PDF