Publications by authors named "Stefan-Adrian F Nastase"

Understanding the mechanistic intricacies of hydrothermally treated zeolite is crucial for valorizing any oxygen-containing renewable feedstocks (e. g., methanol, carbon dioxide, biomass).

View Article and Find Full Text PDF

Zeolite-mediated catalytic cracking of alkanes is pivotal in the petrochemical and refining industry, breaking down heavier hydrocarbon feedstocks into fuels and chemicals. Its relevance also extends to emerging technologies such as biomass and plastic valorization. Zeolite catalysts, with shape selectivity and selective adsorption capabilities, enhance efficiency and sustainability due to their well-defined network of pores, dimensionality, cages/cavities, and channels.

View Article and Find Full Text PDF

Atomically precise copper nanoclusters (NCs) are an emerging class of nanomaterials for catalysis. Their versatile core-shell architecture opens the possibility of tailoring their catalytically active sites. Here, we introduce a core-shell copper nanocluster (CuNC), [Cu(SBu)Cl(PPh)H]BuSO (SBu: -butylthiol; PPh: triphenylphosphine), CuNC, with multiple accessible active sites on its shell.

View Article and Find Full Text PDF

Cascade processes are gaining momentum in heterogeneous catalysis. The combination of several catalytic solids within one reactor has shown great promise for the one-step valorization of C1-feedstocks. The combination of metal-based catalysts and zeolites in the gas phase hydrogenation of CO leads to a large degree of product selectivity control, defined mainly by zeolites.

View Article and Find Full Text PDF

The formation of the first C-C bond and primary olefins from methanol over zeolite and zeotype catalysts has been studied for over 40 years. Over 20 mechanisms have been proposed for the formation of the first C-C bond. In this quantitative multiscale perspective, we decouple the adsorption, desorption, mobility, and surface reactions of early species through a combination of vacuum and sub-vacuum studies using temporal analysis of products (TAP) reactor systems, and through studies with atmospheric fixed bed reactors.

View Article and Find Full Text PDF