Phys Chem Chem Phys
November 2024
This work investigates the interaction of silicon with ruthenium, extending from Si-defect centers in ruthenium bulk to the adsorption of Si on the Ru(0001) surface. Using density functional theory (DFT) we calculate the interaction energies of up to 2 monolayers (MLs) of Si with this surface, uncovering the initial formation of ruthenium silicide (RuSi). Our results demonstrate that Si readily forms substitutional defects (Si) in bulk ruthenium.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
November 2023
We demonstrate emission of electromagnetic pulses with frequencies in the terahertz (THz) range from ruthenium thin films through a second-order nonlinear optical process. Ruthenium deposited on different substrates showed different THz emission properties. We provide evidence that for Ru on glass above a certain power threshold, laser-induced oxidation occurs, resulting in an increased slope of the linear dependence of the THz electric field amplitude on pump power.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
August 2022
Inorganic-Organic lead halide materials have been recognized as potential high-energy X-ray detectors because of their high quantum efficiencies and radiation hardness. Surprisingly little is known about whether the same is true for extreme-ultraviolet (XUV) radiation, despite applications in nuclear fusion research and astrophysics. We used a table-top high-harmonic generation setup in the XUV range between 20 and 45 eV to photoexcite methylammonium lead bromide (MAPbBr) and measure its scintillation properties.
View Article and Find Full Text PDF