For obtaining insights into gene networks during plant reproductive development, having transcriptomes of specific cells from developmental stages as starting points is very useful. During development, there is a balance between cell proliferation and differentiation, and many cell and tissue types are formed. While there is a wealth of transcriptome data available, it is mostly at the organ level and not at specific cell or tissue type level.
View Article and Find Full Text PDFWe studied the D3-type cyclin function during gynoecium development in Arabidopsis and how they are related to the hormone cytokinin and the transcription factor SPATULA. Growth throughout the life of plants is sustained by cell division and differentiation processes in meristematic tissues. In Arabidopsis, gynoecium development implies a multiphasic process where the tissues required for pollination, fertilization, and seed development form.
View Article and Find Full Text PDFIn this review, we give an overview of plant sequencing efforts and how this impacts plant functional genomics research. Plant genome sequence information greatly facilitates the studies of plant biology, functional genomics, evolution of genomes and genes, domestication processes, phylogenetic relationships, among many others. More than two decades of sequencing efforts have boosted the number of available sequenced plant genomes.
View Article and Find Full Text PDFMorphogenesis requires the coordination of cellular behaviors along developmental axes. In plants, gradients of growth and differentiation are typically established along a single longitudinal primordium axis to control global organ shape. Yet, it remains unclear how these gradients are locally adjusted to regulate the formation of complex organs that consist of diverse tissue types.
View Article and Find Full Text PDFAt present, the development of plants with improved traits like superior quality, high yield, or stress resistance, are highly desirable in agriculture. Accelerated crop improvement, however, must capitalize on revolutionary new plant breeding technologies, like genetically modified and gene-edited crops, to heighten food crop traits. Genome editing still faces ineffective methods for the transformation and regeneration of different plant species and must surpass the genotype dependency of the transformation process.
View Article and Find Full Text PDFEXPANSIN15 is involved in petal cell morphology and size, the fusion of the medial tissues in the gynoecium and expansion of fruit valve cells. It genetically interacts with SPATULA and FRUITFULL. Cell expansion is fundamental for the formation of plant tissues and organs, contributing to their final shape and size during development.
View Article and Find Full Text PDFAngiosperms are characterized by the formation of flowers, and in their inner floral whorl, one or various gynoecia are produced. These female reproductive structures are responsible for fruit and seed production, thus ensuring the reproductive competence of angiosperms. In Arabidopsis (Arabidopsis thaliana), the gynoecium is composed of two fused carpels with different tissues that need to develop and differentiate to form a mature gynoecium and thus the reproductive competence of Arabidopsis.
View Article and Find Full Text PDFCurr Opin Plant Biol
October 2023
Angiosperms are the most successful group of land plants. This success is mainly due to the gynoecium, the innermost whorl of the flower. In Arabidopsis, the gynoecium is a syncarpic structure formed by two congenitally fused carpels.
View Article and Find Full Text PDFProtein-DNA interactions are determinant of the regulation of gene expression in living organisms. Luminescence studies have been used in a wide range of techniques to identify how gene transcription can be regulated by proteins such as transcription factors (TFs). Despite the great advances in the use of luciferases as reporters in the performance of this mechanism, some of them still have disadvantages that have been tried to be solved by the generation of new luciferases that induce a more stable and perfectly visualizable reaction.
View Article and Find Full Text PDFSexual reproduction requires the participation of two gametes, female and male. In angiosperms, gametes develop in specialized organs, pollen (containing the male gametes) develops in the stamens, and the ovule (containing the female gamete) develops in the gynoecium. In Arabidopsis thaliana, the female and male sexual organs are found within the same structure called flower, surrounded by the perianth, which is composed of petals and sepals.
View Article and Find Full Text PDFThe appearance of the flower marks a key event in the evolutionary history of plants. Among the four types of floral organs, the gynoecium represents the major adaptive advantage of the flower. The gynoecium is an enclosing structure that protects and facilitates the fertilization of the ovules, which then mature as seeds.
View Article and Find Full Text PDFThe bHLH transcription factor SPATULA (SPT) has been identified as a regulator during different stages of Arabidopsis development, including the control of leaf size. However, the mechanism via which it performs this function has not been elucidated. To better understand the role of SPT during leaf development, we used a transcriptomic approach to identify putative target genes.
View Article and Find Full Text PDFWith the continuous deterioration of arable land due to an ever-growing population, improvement of crops and crop protection have a fundamental role in maintaining and increasing crop productivity. Alternatives to the use of pesticides encompass the use of biological control agents, generation of new resistant crop cultivars, the application of plant activator agrochemicals to enhance plant defenses, and the use of gene editing techniques, like the CRISPR-Cas system. Here, we test the hypothesis that epigenome editing, via CRISPR activation (CRISPRa), activate tomato plant defense genes to confer resistance against pathogen attack.
View Article and Find Full Text PDFEvolution has long been considered to be a conservative process in which new genes arise from pre-existing genes through gene duplication, domain shuffling, horizontal transfer, overprinting, retrotransposition, etc. However, this view is changing as new genes originating from non-genic sequences are discovered in different organisms. Still, rather limited functional information is available.
View Article and Find Full Text PDFAlthough much is known about seed and fruit development at the molecular level, many gaps remain in our understanding of how cell wall modifications can impact developmental processes in plants, as well as how biomechanical alterations influence seed and fruit growth. Mutants of constitute an excellent tool to study the function of gene families devoted to cell wall biogenesis. We have characterized a collection of lines carrying mutations in representative cell wall-related genes for seed and fruit size developmental defects, as well as altered germination rates.
View Article and Find Full Text PDFFlowers are composed of organs whose identity is defined by the combinatorial activity of transcription factors (TFs). The interactions between MADS-box TFs and protein complex formation have been schematized in the floral quartet model of flower development. The gynoecium is the flower's female reproductive part, crucial for fruit and seed production and, hence, for reproductive success.
View Article and Find Full Text PDFFlowering plants produce flowers and one of the most complex floral structures is the pistil or the gynoecium. All the floral organs differentiate from the floral meristem. Various reviews exist on molecular mechanisms controlling reproductive development, but most focus on a short time window and there has been no recent review on the complete developmental time frame of gynoecium and fruit formation.
View Article and Find Full Text PDFCell wall modifications are of pivotal importance during plant development. Among cell wall components, xyloglucans are the major hemicellulose polysaccharide in primary cell walls of dicots and non-graminaceous monocots. They can connect the cellulose microfibril surface to affect cell wall mechanical properties.
View Article and Find Full Text PDFThis special issue includes different research papers and reviews that studied the role of signaling cascades controlling both plant developmental processes and plant response mechanisms to biotic and abiotic stresses [...
View Article and Find Full Text PDFThis article comments on: . 2021. AINTEGUMENTA and AINTEGUMENTA-LIKE6 directly regulate floral homeotic, growth, and vascular development genes in young Arabidopsis flowers.
View Article and Find Full Text PDFTranscription factors are important regulators of gene expression. They can orchestrate the activation or repression of hundreds or thousands of genes and control diverse processes in a coordinated way. This work explores the effect of a master regulator of plant development, BOLITA (BOL), in plant metabolism, with a special focus on specialized metabolism.
View Article and Find Full Text PDF