Publications by authors named "Stefan Wiefels"

Write-variability and resistance instability are major reliability concerns impeding implementation of oxide-based memristive devices in neuromorphic systems. The root cause of the reliability issues is the stochastic nature of conductive filament formation and dissolution, whose impact is particularly critical in the high resistive state (HRS). Optimizing the filament stability requires mitigating diffusive processes within the oxide, but these are unaffected by conventional electrode scaling.

View Article and Find Full Text PDF

Major challenges concerning the reliability of resistive switching random access memories based on the valence change mechanism (VCM) are short-term instability and long-term retention failure of the programmed resistance state, particularly in the high resistive state. On the one hand, read noise limits the reliability of VCMs via comparatively small current jumps especially when looking at the statistics of millions of cells that are needed for industrial applications. Additionally, shaping algorithms aiming for an enlargement of the read window are observed to have no lasting effect.

View Article and Find Full Text PDF

Resistive switching (RS) devices are emerging electronic components that could have applications in multiple types of integrated circuits, including electronic memories, true random number generators, radiofrequency switches, neuromorphic vision sensors, and artificial neural networks. The main factor hindering the massive employment of RS devices in commercial circuits is related to variability and reliability issues, which are usually evaluated through switching endurance tests. However, we note that most studies that claimed high endurances >10 cycles were based on resistance cycle plots that contain very few data points (in many cases even <20), and which are collected in only one device.

View Article and Find Full Text PDF

Metal oxides are commonly used as electrolytes for redox-based resistive switching memories. In most cases, non-noble metals are directly deposited as ohmic electrodes. We demonstrate that irrespective of bulk thermodynamics predictions an intermediate oxide film a few nanometers in thickness is always formed at the metal/insulator interface, and this layer significantly contributes to the development of reliable switching characteristics.

View Article and Find Full Text PDF