Publications by authors named "Stefan Wernitznig"

The study of very early human placentation is largely limited due to ethical restrictions on the use of embryonic tissue and the fact that the placental anatomy of common laboratory animal models varies considerably from that of humans. In recent years several promising models, including trophoblast stem cell-derived organoids, have been developed that have also proven useful for the study of important trophoblast differentiation processes. However, the consideration of maternal blood flow in trophoblast invasion models currently appears to be limited to animal models.

View Article and Find Full Text PDF

Background: The human placenta, a tissue with a lifespan limited to the period of pregnancy, is exposed to varying shear rates by maternal blood perfusion depending on the stage of development. In this study, we aimed to investigate the effects of fluidic shear stress on the human trophoblast transcriptome and metabolism.

Results: Based on a trophoblast cell line cultured in a fluidic flow system, changes caused by shear stress were analyzed and compared to static conditions.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the localization and expression of sphingosine-1-phosphate receptors (S1PR1-S1PR3) in the human placenta throughout different stages of pregnancy, focusing on the first trimester, pre-term, and term cases.
  • Results indicate that S1PR2 predominates in early pregnancy but decreases as pregnancy progresses, while S1PR1 and S1PR3 increase toward term.
  • The expression of S1PR2 is negatively affected by platelet-derived factors in trophoblast cells, suggesting that changing conditions in the placenta could influence receptor dynamics throughout gestation.
View Article and Find Full Text PDF

Human pregnancy depends on the proper development of the embryo prior to implantation and the implantation of the embryo into the uterine wall. During the pre-implantation phase, formation of the morula is followed by internalization of blastomeres that differentiate into the pluripotent inner cell mass lineage, while the cells on the surface undergo polarization and differentiate into the trophectoderm of the blastocyst. The trophectoderm mediates apposition and adhesion of the blastocyst to the uterine epithelium.

View Article and Find Full Text PDF

The ability of locusts to detect looming stimuli and avoid collisions or predators depends on a neuronal circuit in the locust's optic lobe. Although comprehensively studied for over three decades, there are still major questions about the computational steps of this circuit. We used fourth instar larvae of Locusta migratoria to describe the connection between the lobula giant movement detector 1 (LGMD1) neuron in the lobula complex and the upstream neuropil, the medulla.

View Article and Find Full Text PDF

In early human gestation, maternal arterial blood flow into the intervillous space of the developing placenta is obstructed by invaded trophoblasts, which form cellular plugs in uterine spiral arteries. These trophoblast plugs have recently been described to be loosely cohesive with clear capillary-sized channels into the intervillous space by 7 weeks of gestation. Here, we analysed localisation of maternal platelets at the maternal-foetal interface of human first trimester pregnancy, and tested the hypothesis whether HLA-G, which is primarily expressed by extravillous trophoblasts, affects aggregation and adhesion of isolated platelets.

View Article and Find Full Text PDF

Electron microscopy (EM) provides the necessary resolution to visualize the finer structures of nervous tissue morphology, which is important to understand healthy and pathological conditions in the brain. However, for the interpretation of the micrographs the tissue preservation is crucial. The quality of the tissue structure is mostly influenced by the post mortem interval (PMI), the time of death until the preservation of the tissue.

View Article and Find Full Text PDF

Investigations of the ultrastructural features of neurons and their synapses are only possible with electron microscopy. Especially for comparative studies of the changes in densities and distributions of such features, an unbiased sampling protocol is vital for reliable results. Here, we present a workflow for the image acquisition of brain samples.

View Article and Find Full Text PDF

In this work the development of an electrochemical sensor for the determination of polyunsaturated fatty acids (PUFAs), in particular linoleic acid, in commercially available safflower oil as complex matrix is described. The sensor consists of a carbon paste electrode with cobalt(II) phthalocyanine, Co(II)Pc, as mediator and multiwalled carbon-nanotubes (MWCNT) as nanomaterial. As carrier medium a sodium borate buffer (0.

View Article and Find Full Text PDF

In locusts, two lobula giant movement detector neurons (LGMDs) act as looming object detectors. Their reproducible responses to looming and their ethological significance makes them models for single neuron computation. But there is no comprehensive picture of the neurons that connect directly to each LGMD.

View Article and Find Full Text PDF

Background: Elucidating the anatomy of neuronal circuits and localizing the synaptic connections between neurons, can give us important insights in how the neuronal circuits work. We are using serial block-face scanning electron microscopy (SBEM) to investigate the anatomy of a collision detection circuit including the Lobula Giant Movement Detector (LGMD) neuron in the locust, Locusta migratoria. For this, thousands of serial electron micrographs are produced that allow us to trace the neuronal branching pattern.

View Article and Find Full Text PDF

The small size of some insects, and the crystalline regularity of their eyes, have made them ideal for large-scale reconstructions of visual circuits. In phylogenetically recent muscomorph flies, like Drosophila, precisely coordinated output to different motion-processing pathways is delivered by photoreceptors (R cells), targeting four different postsynaptic cells at each synapse (tetrad). Tetrads were linked to the evolution of aerial agility.

View Article and Find Full Text PDF

The bryophyte Mielichhoferia elongata is known to occur on copper-rich substrate, but the exact resistance level remained to be determined by in vitro experiments. Here, we tested its copper tolerance in graded copper solutions and compared the results to the moss Physcomitrella patens that is not known to inhabit heavy metal sites. Our results confirm the survival of M.

View Article and Find Full Text PDF