Publications by authors named "Stefan Vollmar"

Agouti-related peptide (AgRP)-expressing and proopiomelanocortin (POMC)-expressing neurons reciprocally regulate food intake. Here, we combine non-interacting recombinases to simultaneously express functionally opposing chemogenetic receptors in AgRP and POMC neurons for comparing metabolic responses in male and female mice with simultaneous activation of AgRP and inhibition of POMC neurons with isolated activation of AgRP neurons or isolated inhibition of POMC neurons. We show that food intake is regulated by the additive effect of AgRP neuron activation and POMC neuron inhibition, while systemic insulin sensitivity and gluconeogenesis are differentially modulated by isolated-versus-simultaneous regulation of AgRP and POMC neurons.

View Article and Find Full Text PDF

Pro-opiomelanocortin (POMC)-expressing neurons in the arcuate nucleus of the hypothalamus represent key regulators of metabolic homeostasis. Electrophysiological and single-cell sequencing experiments have revealed a remarkable degree of heterogeneity of these neurons. However, the exact molecular basis and functional consequences of this heterogeneity have not yet been addressed.

View Article and Find Full Text PDF

Regional cerebral blood flow (rCBF) is spatially and temporally adjusted to local energy needs. This coupling involves dilation of vessels both at the site of metabolite exchange and upstream of the activated region. Deficits in upstream blood supply limit the 'capacity to raise rCBF' in response to functional activation and therefore compromise brain function.

View Article and Find Full Text PDF

The purpose of this positron emission tomography (PET) study was to compare the prognostic value of pretreatment volume of ¹¹C]-methionine (MET) uptake and semiquantitative MET uptake ratio in patients with malignant glioma. The study population comprised 40 patients with malignant glioma. Pretreatment magnetic resonance imaging (MRI) and MET-PET imaging were performed before the initiation of glioma treatment in all patients.

View Article and Find Full Text PDF

In patients with recurrent glioblastoma multiforme (GBM), local minimally invasive treatment modalities have gained increasing interest recently because they are associated with fewer side effects than open surgery. For example, local tumor coagulation by laser-induced interstitial thermotherapy (LITT) is such a minimally invasive technique. We monitored the metabolic effects of stereotaxy-guided LITT in a patient with a recurrent GBM using amino acid positron emission tomography (PET).

View Article and Find Full Text PDF

In Alzheimer's disease (AD), persistent microglial activation as sign of chronic neuroinflammation contributes to disease progression. Our study aimed to in vivo visualize and quantify microglial activation in 13- to 15-month-old AD mice using [(11)C]-(R)-PK11195 and positron emission tomography (PET). We attempted to modulate neuroinflammation by subjecting the animals to an anti-inflammatory treatment with pioglitazone (5-weeks' treatment, 5-week wash-out period).

View Article and Find Full Text PDF

In patients with World Health Organization (WHO) grade III glioma with a lack of or minimal (< 1 cm3) magnetic resonance imaging (MRI) contrast enhancement, the volume of the metabolically active part of the tumor was assessed by [¹¹C]-methionine positron emission tomography (MET-PET). Eleven patients with WHO grade III gliomas underwent MET-PET and MRI (contrast-enhanced T1- and T2-weighted images). To calculate the volumes in cubic centimeters, threshold-based volume of interest analyses of the metabolically active tumor (MET uptake index ≥ 1.

View Article and Find Full Text PDF

Purpose: Inhibition of angiogenesis has shown clinical success in patients with cancer. Thus, imaging approaches that allow for the identification of angiogenic tumors and the detection of response to anti-angiogenic treatment are of high clinical relevance.

Experimental Design: We established an in vivo magnetic resonance imaging (MRI) approach that allows us to simultaneously image tumor microvessel density and tumor vessel size in a NSCLC model in mice.

View Article and Find Full Text PDF

Experimental and clinical studies indicate that waves of cortical spreading depolarization (CSD) appearing in the ischemic penumbra contribute to secondary lesion growth. We used an embolic stroke model that enabled us to investigate inverse coupling of blood flow by laser speckle imaging (CBF(LSF)) to CSD as a contributing factor to lesion growth already in the early phase after arterial occlusion. Embolization by macrospheres injected into the left carotid artery of anesthetized rats reduced CBF(LSF) in the territories of the middle cerebral artery (MCA) (8/14 animals), the posterior cerebral artery (PCA) (2/14) or in less clearly defined regions (4/14).

View Article and Find Full Text PDF

The purpose of this study was to investigate the potential of 3'-deoxy-3'-[¹⁸F]fluorothymidine ([¹⁸F]FLT) positron emission tomography (PET) to detect early treatment responses in gliomas. Human glioma cells were stably transduced with genes yielding therapeutic activity, sorted for different levels of exogenous gene expression, and implanted subcutaneously into nude mice. Multimodality imaging during prodrug therapy included (a) magnetic resonance imaging, (b) PET with 9-(4-[¹⁸F]fluoro-3-hydroxymethylbutyl)guanine assessing exogenous gene expression, and (c) repeat [¹⁸F]FLT PET assessing antiproliferative therapeutic response.

View Article and Find Full Text PDF

How does infarction in victims of stroke and other types of acute brain injury expand to its definitive size in subsequent days? Spontaneous depolarizations that repeatedly spread across the cerebral cortex, sometimes at remarkably regular intervals, occur in patients with all types of injury. Here, we show experimentally with in vivo real-time imaging that similar, spontaneous depolarizations cycle repeatedly around ischaemic lesions in the cerebral cortex, and enlarge the lesion in step with each cycle. This behaviour results in regular periodicity of depolarization when monitored at a single point in the lesion periphery.

View Article and Find Full Text PDF

Unlabelled: (11)C-Methionine PET is a well-established technique for evaluating tumor extent for diagnosis and treatment planning in neurooncology. Image interpretation is typically performed using the ratio of uptake within the tumor to a reference region. The precise location of this reference region is important as local variations in methionine uptake may significantly alter the result, particularly for lesions at the border of gray and white matter.

View Article and Find Full Text PDF

Strategies for non-invasive and quantitative imaging of gene expression in vivo have been developed over the past decade. Non-invasive assessment of the dynamics of gene regulation is of interest for the detection of endogenous disease-specific biological alterations (e.g.

View Article and Find Full Text PDF

To develop efficient and safe gene therapy approaches, the herpes simplex virus type 1 thymidine kinase gene (HSV-1-tk) has been shown to function as a marker gene for the direct noninvasive in vivo localization of thymidine kinase (TK) expression by positron emission tomography (PET) using radiolabeled nucleoside analogues as specific TK substrates. Moreover, the gene encoding dopamine type 2 receptor (d2r) could be used as a PET marker gene using specific radiolabeled receptor binding compounds. Here we describe the quantitative colocalization of d2r and HSV-1-tk gene expression mediated from a universal HSV-1 amplicon vector in a subcutaneous human Gli36dEGFR glioma model by PET.

View Article and Find Full Text PDF

To further develop gene therapy for patients with glioblastomas, an experimental gene therapy protocol was established comprising a series of imaging parameters for (i) noninvasive assessment of viable target tissue followed by (ii) targeted application of herpes simplex virus type 1 (HSV-1) amplicon vectors and (iii) quantification of treatment effects by imaging. We show that viable target tissue amenable for application of gene therapy vectors can be identified by multitracer positron emission tomography (PET) using 2-(18)F-fluoro-2-deoxy-D-glucose, methyl-(11)C-L-methionine, or 3'-deoxy-3'-(18)F-fluoro-L-thymidine ([(18)F]FLT). Targeted application of HSV-1 amplicon vectors containing two therapeutic genes with synergistic antitumor activity (Escherichia coli cytosine deaminase, cd, and mutated HSV-1 thymidine kinase, tk39, fused to green fluorescent protein gene, gfp) leads to an overall response rate of 68%, with 18% complete responses and 50% partial responses.

View Article and Find Full Text PDF

Unlabelled: Because of the high glucose metabolism in normal brain tissue 18F-FDG is not the ideal tracer for the detection of gliomas. Methyl-11C-l-methionine (11C-MET) is better suited for imaging the extent of gliomas, because it is transported specifically into tumors but only insignificantly into normal brain. 3'-Deoxy-3'-18F-fluorothymidine (18F-FLT) has been introduced as a proliferation marker in a variety of neoplasias and has promising potential for the detection of brain tumors, because its uptake in normal brain is low.

View Article and Find Full Text PDF

In recent years, mutual information has proved to be an excellent criterion for registration of intra-individual images from different modalities. Multi-resolution coarse-to-fine optimization was proposed for speeding-up of the registration process. The aim of our work was to further improve registration speed without compromising robustness or accuracy.

View Article and Find Full Text PDF

For the development of efficient and safe gene therapy protocols for clinical application it is desirable to determine the tissue dose of vector-mediated therapeutic gene expression noninvasively in vivo. The herpes simplex virus type 1 thymidine kinase gene (HSV-1-tk) has been shown to function as a marker gene for the direct noninvasive in vivo localization of thymidine kinase (TK) expression by positron emission tomography (PET). Using bicistronic or multicistronic gene-expressing cassettes with tk as the PET marker gene, the quantitative analysis of tk gene expression may indirectly indicate the distribution and the level of expression of linked and proportionally coexpressed genes.

View Article and Find Full Text PDF