Objective To develop an algorithm, based on the voltage matrix, for detecting regular cochlear implant (CI) electrode position during the implantation procedure, tip fold-over or basal kinking for lateral-wall electrodes. The availability of an algorithm would be valuable in clinical routine, as incorrect positioning of the electrode array can potentially be recognized intraoperatively. Design In this retrospective study intraoperative voltage matrix and postoperative digital volume tomography of 525 CI recipients were analyzed.
View Article and Find Full Text PDFJ Assoc Res Otolaryngol
February 2024
Purpose: The hearing outcomes of cochlear implant users depend on the functional status of the electrode-neuron interface inside the cochlea. This can be assessed by measuring electrically evoked compound action potentials (eCAPs). Variations in cochlear neural health and survival are reflected in eCAP-based metrics.
View Article and Find Full Text PDFBecause cochlear implants function by stimulating the auditory nerve, it is assumed that the condition of the nerve plays an important role in the efficacy of the prosthesis. Thus, considerable research has been devoted to methods of preserving the nerve following deafness. Neurotrophins have been identified as a potential contributor to neural health, but most of the research to date has been done in young animals and for short periods (less than 3 to 6 months) after the onset of treatment.
View Article and Find Full Text PDFThe electrically evoked compound action potential (eCAP) is a routinely performed measure of the auditory nerve in cochlear implant users. Using a convolution model of the eCAP, additional information about the neural firing properties can be obtained, which may provide relevant information about the health of the auditory nerve. In this study, guinea pigs with various degrees of nerve degeneration were used to directly relate firing properties to nerve histology.
View Article and Find Full Text PDFAfter substantial loss of cochlear hair cells, exogenous neurotrophins prevent degeneration of the auditory nerve. Because cochlear implantation, the current therapy for profound sensorineural hearing loss, depends on a functional nerve, application of neurotrophins is being investigated. We addressed two questions important for fundamental insight into the effects of exogenous neurotrophins on a degenerating neural system, and for translation to the clinic.
View Article and Find Full Text PDFPartial loss and subsequent recovery of cochlear implant function in the first few weeks following cochlear implant surgery has been observed in previous studies using psychophysical detection thresholds. In the current study, we explored this putative manifestation of insertion trauma using objective functional measures: electrically-evoked compound action potential (ECAP) amplitude-growth functions (ECAP amplitude as a function of stimulus level). In guinea pigs implanted in a hearing ear with good post-implant hearing and good spiral ganglion neuron (SGN) survival, consistent patterns of ECAP functions were observed.
View Article and Find Full Text PDFSuccessful cochlear implant performance requires adequate responsiveness of the auditory nerve to prolonged pulsatile electrical stimulation. Degeneration of the auditory nerve as a result of severe hair cell loss could considerably compromise this ability. The main objective of this study was to characterize the recovery of the electrically stimulated auditory nerve, as well as to evaluate possible changes caused by deafness-induced degeneration.
View Article and Find Full Text PDFAmazing progress has been made in providing useful hearing to hearing-impaired individuals using cochlear implants, but challenges remain. One such challenge is understanding the effects of partial degeneration of the auditory nerve, the target of cochlear implant stimulation. Here we review studies from our human and animal laboratories aimed at characterizing the health of the implanted cochlea and the auditory nerve.
View Article and Find Full Text PDFAfter severe hair cell loss, secondary degeneration of spiral ganglion cells (SGCs) is observed-a gradual process that spans years in humans but only takes weeks in guinea pigs. Being the target for cochlear implants (CIs), the physiological state of the SGCs is important for the effectiveness of a CI. For assessment of the nerve's state, focus has generally been on its response threshold.
View Article and Find Full Text PDFBackground: A role of an altered dietary pattern (e.g., a diet rich in sugar) but also alterations at the level of the intestinal barrier have repeatedly been discussed to be involved in the development and progression of nonalcoholic fatty liver disease (NAFLD).
View Article and Find Full Text PDFAlthough the cochlear implant is already the world's most successful neural prosthesis, opportunities for further improvement abound. Promising areas of current research include work on improving the biological infrastructure in the implanted cochlea to optimize reception of cochlear implant stimulation and on designing the pattern of electrical stimulation to take maximal advantage of conditions in the implanted cochlea. In this review we summarize what is currently known about conditions in the cochlea of deaf, implanted humans and then review recent work from our animal laboratory investigating the effects of preserving or reinnervating tissues on psychophysical and electrophysiological measures of implant function.
View Article and Find Full Text PDFBackground: The standard electrode array for the MED-EL MAESTRO cochlear implant system is 31 mm in length which allows an insertion angle of approximately 720 degrees . When fully inserted, this long electrode array is capable of stimulating the most apical region of the cochlea. No investigation has explored Electrically Evoked Compound Action Potential (ECAP) recordings in this region with a large number of subjects using a commercially available cochlear implant system.
View Article and Find Full Text PDFAn established model for the signal analysis performed by the human cochlea is the overcomplete gammatone filterbank. The high correlation of this signal model with human speech and environmental sounds [E. Smith and M.
View Article and Find Full Text PDFResults of animal experiments suggest that consumption of refined carbohydrates (e.g. fructose) can result in small intestinal bacterial overgrowth and increased intestinal permeability, thereby contributing to the development of nonalcoholic fatty liver disease (NAFLD).
View Article and Find Full Text PDFEvidence that neurosensory systems use sparse signal representations as well as improved performance of signal processing algorithms using sparse signal models raised interest in sparse signal coding in the last years. For natural audio signals like speech and environmental sounds, gammatone atoms have been derived as expansion functions that generate a nearly optimal sparse signal model (Smith, E., Lewicki, M.
View Article and Find Full Text PDF