Publications by authors named "Stefan Stoldt"

With recent advances in multi-color super-resolution light microscopy, it is possible to simultaneously visualize multiple subunits within biological structures at nanometer resolution. To optimally evaluate and interpret spatial proximity of stainings on such an image, colocalization analysis tools have to be able to integrate prior knowledge on the local geometry of the recorded biological complex. We present MultiMatch to analyze the abundance and location of chain-like particle arrangements in multi-color microscopy based on multi-marginal optimal unbalanced transport methodology.

View Article and Find Full Text PDF

We report on the synthesis of two fluorescent probes which can be activated by β-Galactosidase (β-Gal) enzymes and/or light. The probes contained 2-nitro-4-oxybenzyl and 3-nitro-4-oxybenzyl fragments, with β-Gal residues linked to C-4. We performed the enzymatic and photoactivation of the probes in a cuvette and compared them, prior to the labeling of fusion protein in live cells with overexpressed β-galactosidase.

View Article and Find Full Text PDF

Cristae are invaginations of the mitochondrial inner membrane that are crucial for cellular energy metabolism. The formation of cristae requires the presence of a protein complex known as MICOS, which is conserved across eukaryotic species. One of the subunits of this complex, MIC10, is a transmembrane protein that supports cristae formation by oligomerization.

View Article and Find Full Text PDF

Human mitochondria express a genome that encodes thirteen core subunits of the oxidative phosphorylation system (OXPHOS). These proteins insert into the inner membrane co-translationally. Therefore, mitochondrial ribosomes engage with the OXA1L-insertase and membrane-associated proteins, which support membrane insertion of translation products and early assembly steps into OXPHOS complexes.

View Article and Find Full Text PDF

Nuclear-encoded mitochondrial proteins destined for the matrix have to be transported across two membranes. The TOM and TIM23 complexes facilitate the transport of precursor proteins with N-terminal targeting signals into the matrix. During transport, precursors are recognized by the TIM23 complex in the inner membrane for handover from the TOM complex.

View Article and Find Full Text PDF

We introduce MINSTED, a fluorophore localization and super-resolution microscopy concept based on stimulated emission depletion (STED) that provides spatial precision and resolution down to the molecular scale. In MINSTED, the intensity minimum of the STED doughnut, and hence the point of minimal STED, serves as a movable reference coordinate for fluorophore localization. As the STED rate, the background and the required number of fluorescence detections are low compared with most other STED microscopy and localization methods, MINSTED entails substantially less fluorophore bleaching.

View Article and Find Full Text PDF

Super-resolution fluorescence microscopy is a widely used technique in cell biology. Stimulated emission depletion (STED) microscopy enables the recording of multiple-color images with subdiffraction resolution. The enhanced resolution leads to new challenges regarding colocalization analysis of macromolecule distributions.

View Article and Find Full Text PDF

Formylation of 2,6-dichloro-5-R-nicotinic acids at C-4 followed by condensation with 3-hydroxy-N,N-dimethylaniline gave analogs of the popular TAMRA fluorescent dye with a 2,6-dichloro-5-R-nicotinic acid residues (R=H, F). The following reaction with thioglycolic acid is selective, involves only one chlorine atom at the carbon between pyridine nitrogen and the carboxylic acid group and affords new rhodamine dyes absorbing at 564/ 573 nm and emitting at 584/ 597 nm (R=H/ F, in aq. PBS).

View Article and Find Full Text PDF

Mitochondrial function is critically dependent on the folding of the mitochondrial inner membrane into cristae; indeed, numerous human diseases are associated with aberrant crista morphologies. With the MICOS complex, OPA1 and the F F -ATP synthase, key players of cristae biogenesis have been identified, yet their interplay is poorly understood. Harnessing super-resolution light and 3D electron microscopy, we dissect the roles of these proteins in the formation of cristae in human mitochondria.

View Article and Find Full Text PDF

The nanometer thickness of filaments and the dynamic behavior of actin-a protein playing a crucial role in cellular function and motility-make it attractive for observation with super-resolution optical microscopy. We developed the solution-phase synthesis of des-bromo-des-methyl-jasplakinolide-lysine, used as the "recognition unit" (ligand) for F-actin in living cells. The first amino acid-Fmoc--TIPS-β-tyrosine-was prepared in 78% yield (two steps in one pot).

View Article and Find Full Text PDF
Article Synopsis
  • - Mitochondria's inner membrane has structures called cristae which are believed to help create local proton gradients necessary for ATP synthesis, but their exact role in energy conversion is unclear.
  • - Research measured local pH levels in mitochondria of yeast cells and found that only minor proton gradients exist in both typical and cristae-less cells, leading to low ATP synthesis rates, despite adequate driving forces.
  • - The study concludes that the inner membrane's structure doesn't impact pH levels needed for ATP production, suggesting that the close arrangement of oxidative phosphorylation complexes in the cristae enhances the connection between proton pumping and ATP synthesis.
View Article and Find Full Text PDF

Mitochondria are tubular double-membrane organelles essential for eukaryotic life. They form extended networks and exhibit an intricate inner membrane architecture. The MICOS (mitochondrial contact site and cristae organizing system) complex, crucial for proper architecture of the mitochondrial inner membrane, is localized primarily at crista junctions.

View Article and Find Full Text PDF

Photoactivatable rhodamine spiroamides and spirocyclic diazoketones emerged recently as synthetic markers applicable in multicolor super-resolution microscopy. However, their applicability in single molecule localization microscopy (SMLM) is often limited by aggregation, unspecific adhesion, and low reactivity caused by insufficient solubility and precipitation from aqueous solutions. We report here two synthetic modifications increasing the polarity of compact polycyclic and hydrophobic labels decorated with a reactive group: attachment of 3-sulfo-l-alanyl-beta-alanine dipeptide (a "universal hydrophilizer") or allylic hydroxylation in photosensitive rhodamine diazoketones (and spiroamides).

View Article and Find Full Text PDF

Oxidative phosphorylation (OXPHOS) is vital for the regeneration of the vast majority of ATP in eukaryotic cells . OXPHOS is carried out by large multi-subunit protein complexes in the cristae membranes, which are invaginations of the mitochondrial inner membrane. The OXPHOS complexes are a mix of subunits encoded in the nuclear and mitochondrial genomes.

View Article and Find Full Text PDF

A 810 nm STED nanoscopy setup and an appropriate combination of two fluorescent dyes (Si-rhodamine 680SiR and carbopyronine 610CP) have been developed for near-IR live-cell super-resolution imaging. Vimentin endogenously tagged using the CRISPR/Cas9 approach with the SNAP tag, together with a noncovalent tubulin label, provided reliable and cell-to-cell reproducible dual-color confocal and STED imaging of the cytoskeleton in living cells.

View Article and Find Full Text PDF

Formalin fixed and paraffin-embedded human tissue resected during cancer surgery is indispensable for diagnostic and therapeutic purposes and represents a vast and largely unexploited resource for research. Optical microscopy of such specimen is curtailed by the diffraction-limited resolution of conventional optical microscopy. To overcome this limitation, we used STED super-resolution microscopy enabling optical resolution well below the diffraction barrier.

View Article and Find Full Text PDF

The Oxa1 protein is a well-conserved integral protein of the inner membrane of mitochondria. It mediates the insertion of both mitochondrial- and nuclear-encoded proteins from the matrix into the inner membrane. We investigated the distribution of budding yeast Oxa1 between the two subdomains of the contiguous inner membrane--the cristae membrane (CM) and the inner boundary membrane (IBM)--under different physiological conditions.

View Article and Find Full Text PDF

Heterogeneity in the shapes of individual multicellular organisms is a daily experience. Likewise, even a quick glance through the ocular of a light microscope reveals the morphological heterogeneities in genetically identical cultured cells, whereas heterogeneities on the level of the organelles are much less obvious. This short review focuses on intracellular heterogeneities at the example of the mitochondria and their analysis by fluorescence microscopy.

View Article and Find Full Text PDF

H1 histones are progressively phosphorylated during the cell cycle. The number of phosphorylated sites is zero to three in late S phase and increases to five or six in late G2 phase and M phase. It is assumed that this phosphorylation modulates chromatin condensation and decondensation, but its specific role remains unclear.

View Article and Find Full Text PDF

Background Information: H1 histones are a protein family comprising several subtypes. Although specific functions of the individual subtypes could not be determined so far, differential roles are indicated by varied nuclear distributions as well as differential expression patterns of the H1 subtypes. Although the group of replication-dependent H1 subtypes is synthesized during S phase, the replacement H1 subtype, H1 degrees , is also expressed in a replication-independent manner in non-proliferating cells.

View Article and Find Full Text PDF